How to inject dbcontext with StructureMap and WebApi2 - entity-framework

I would like to inject my dbcontext into my services in web api 2 project. But I’m a little unsure of how to do that. I've read through the docs but lifecycles, scopes, requests, nested containers...they all leave me a little unsure. I have pieced together the following code from my best understanding. After installing the Nuget package StructureMap.WebApi2, I proceeded to update SM from v3 to v4, as well as the SM.MVC5 from v3 to v4.
The following code appears to have the desired effect of using one dbcontext per http request (I think that's what i want...i'm so confused about scopes) so that the same dbcontext is shared for all services during a users transaction, and then disposed when the transaction (http request) is closed. But appearances are not always right.
IoC.cs
public static IContainer Initialize()
{
var container = new Container(_ =>
{
_.AddRegistry<DefaultRegistry>();
_.ForConcreteType<MyDbContext>().Configure.ContainerScoped();
});
DomainEvents.Initialize(container);
return container;
}}
DefaultRegistry.cs:
public DefaultRegistry()
{
var mapperConfig = new MapperConfiguration(cfg =>
{
cfg.AddProfile(new Common.Map.MapProfile());
cfg.CreateMissingTypeMaps = true;
});
var mapper = mapperConfig.CreateMapper();
For<IMapper>().Use(() => mapperConfig.CreateMapper());
For<MyDbContext>().Use(()=> new MyDbContext());
Scan(
scan =>
{
scan.AssemblyContainingType<ServiceBase>();
scan.TheCallingAssembly();
scan.WithDefaultConventions();
scan.ConnectImplementationsToTypesClosing(typeof(IHandle<>));
});
}
The Nuget package StructureMap.WebApi2 created some other files for wiring up resolution and nested containers, but i'm leaving them out of this question for the sake of brevity.

Have a look at the Mehdime DbContext Scope Factory / Locator: https://github.com/mehdime/DbContextScope and he has a bit of a run-down of it on his blog. (link in the project description.) There are forks off there updated to the latest EF versions.
I've found it to be an excellent unit of work wrapper for EF contexts without having to worry about injecting or passing around those contexts directly.
The trouble with IoC containers and constructor injection is that if you register your DBContext it means that it's hard to work with things like a unit of work within the scope of a request without it essentially being the entire scope of the request. The DbContext Scope solves this by having you register a Scope Factory and a Scope Locator in your Container. Code controlling the Scope (unit of work) will use the Scope Factory to initialize a context scope for your DbContexts. Code operating with DbSets etc. in a DbContext use the ContextScopeLocator to get their UoW /w it's DbContext & sets.

Related

WebAPI/Unity Intercept Request and Change ConectionString Unity Container for EF Context

I'm building an API that needs to connect to a different database per request. Currently I'm using EF. These databases all have the same schema, therefore I can share a DbContext class. I have repositories to abstract persistence, and these are the ones using the DbContext objects.
Unity is handling dependency resolution, it is injecting my repositories with DbContext objects, and the repos on the controllers. Basically with zero configuration. I understand that probably I may need to create my own HttpRequestLifeCycle thing as suggested in this answer to make sure I have the same DbContext object through out the request.
Now, I would like to configure a ConnectionString to be used by Unity when creating DbContext objects to pass along to the repositories.
These ConnectionString will come from a repository (most likely a different fixed database), based on a parameter on my route. So, my intention is to have a delegating handler inspect the route, get the parameter, get the ConnectionString and tell Unity: "here, use this particular connection string when creating DbContext objects for my repositories during this request."
First, is my approach reasonable? Is this achievable?
How would this dynamic parameter configuration done?
Thanks in advance,
Yes, this is reasonable and achievable and frankly, easy.
Just approach this differently, instead of thinking how to inject connection strings, just register a factory for your db contexts. In the factory method, use the route information to read the connection string and return the context.
containe.Register<MyDbContext>( new InjectionFactory(
c => {
// this is the factory method
// the code will be executed upon each resolution
String routeInfo = GetTenantFromCurrentRoute();
String cs = GetCsFor( routeInfo );
return new MyDbContext( cs );
}, new PerHttpRequestLifetimeManager() )

Workflow: Creating Dependency Chain with Service Locator Pattern

I'm trying to get dependencies set up correctly in my Workflow application. It seems the best way to do this is using the Service Locator pattern that is provided by Workflow's WorkflowExtensions.
My workflow uses two repositories: IAssetRepository and ISenderRepository. Both have implementations using Entity Framework: EFAssetRepository, and EFSenderRepository, but I'd like both to use the same DbContext.
I'm having trouble getting both to use the same DbContext. I'm used to using IoC for dependency injection, so I thought I'd have to inject the DbContext into the EF repositories via their constructor, but this seems like it would be mixing the service locator and IoC pattern, and I couldn't find an easy way to achieve it, so I don't think this is the way forward.
I guess I need to chain the service locator calls? So that the constructor of my EF repositories do something like this:
public class EFAssetRepository
{
private MyEntities entities;
public EFAssetRepository()
{
this.entities = ActivityContext.GetExtension<MyEntities>();
}
}
Obviously the above won't work because the reference to ActivityContext is made up.
How can I achieve some form of dependency chain using the service locator pattern provided for WF?
Thanks,
Nick
EDIT
I've posted a workaround for my issue below, but I'm still not happy with it. I want the code activity to be able to call metadata.Require<>(), because it should be ignorant of how extensions are loaded, it should just expect that they are. As it is, my metadata.Require<> call will stop the workflow because the extension appears to not be loaded.
It seems one way to do this is by implementing IWorkflowInstanceExtension on an extension class, to turn it into a sort of composite extension. Using this method, I can solve my problem thus:
public class UnitOfWorkExtension : IWorkflowInstanceExtension, IUnitOfWork
{
private MyEntities entities = new MyEntities();
IEnumerable<object> IWorkflowInstanceExtension.GetAdditionalExtensions()
{
return new object[] { new EFAssetRepository(this.entities), new EFSenderRepository(this.entities) };
}
void IWorkflowInstanceExtension.SetInstance(WorkflowInstanceProxy instance) { }
public void SaveChanges()
{
this.entities.SaveChanges();
}
}
The biggest downside to doing it this way is that you can't call metadata.RequireExtension<IAssetRepository>() or metadata.RequireExtension<ISenderRepository>() in the CacheMetadata method of a CodeActivity, which is common practice. Instead, you must call metadata.RequireExtension<IUnitOfWork>(), but it is still fine to do context.GetExtension<IAssetRepository>() in the Execute() method of the CodeActivity. I imagine this is because the CacheMetadata method is called before any workflow instances are created, and if no workflow instances are created, the extension factory won't have been called, and therefore the additional extensions won't have been loaded into the WorkflowInstanceExtensionManager, so essentially, it won't know about the additional extensions until a workflow instance is created.

Entity Framework 6 Code First - Is Repository Implementation a Good One?

I am about to implement an Entity Framework 6 design with a repository and unit of work.
There are so many articles around and I'm not sure what the best advice is: For example I realy like the pattern implemented here: for the reasons suggested in the article here
However, Tom Dykstra (Senior Programming Writer on Microsoft's Web Platform & Tools Content Team) suggests it should be done in another article: here
I subscribe to Pluralsight, and it is implemented in a slightly different way pretty much every time it is used in a course so choosing a design is difficult.
Some people seem to suggest that unit of work is already implemented by DbContext as in this post, so we shouldn't need to implement it at all.
I realise that this type of question has been asked before and this may be subjective but my question is direct:
I like the approach in the first (Code Fizzle) article and wanted to know if it is perhaps more maintainable and as easily testable as other approaches and safe to go ahead with?
Any other views are more than welcome.
#Chris Hardie is correct, EF implements UoW out of the box. However many people overlook the fact that EF also implements a generic repository pattern out of the box too:
var repos1 = _dbContext.Set<Widget1>();
var repos2 = _dbContext.Set<Widget2>();
var reposN = _dbContext.Set<WidgetN>();
...and this is a pretty good generic repository implementation that is built into the tool itself.
Why go through the trouble of creating a ton of other interfaces and properties, when DbContext gives you everything you need? If you want to abstract the DbContext behind application-level interfaces, and you want to apply command query segregation, you could do something as simple as this:
public interface IReadEntities
{
IQueryable<TEntity> Query<TEntity>();
}
public interface IWriteEntities : IReadEntities, IUnitOfWork
{
IQueryable<TEntity> Load<TEntity>();
void Create<TEntity>(TEntity entity);
void Update<TEntity>(TEntity entity);
void Delete<TEntity>(TEntity entity);
}
public interface IUnitOfWork
{
int SaveChanges();
}
You could use these 3 interfaces for all of your entity access, and not have to worry about injecting 3 or more different repositories into business code that works with 3 or more entity sets. Of course you would still use IoC to ensure that there is only 1 DbContext instance per web request, but all 3 of your interfaces are implemented by the same class, which makes it easier.
public class MyDbContext : DbContext, IWriteEntities
{
public IQueryable<TEntity> Query<TEntity>()
{
return Set<TEntity>().AsNoTracking(); // detach results from context
}
public IQueryable<TEntity> Load<TEntity>()
{
return Set<TEntity>();
}
public void Create<TEntity>(TEntity entity)
{
if (Entry(entity).State == EntityState.Detached)
Set<TEntity>().Add(entity);
}
...etc
}
You now only need to inject a single interface into your dependency, regardless of how many different entities it needs to work with:
// NOTE: In reality I would never inject IWriteEntities into an MVC Controller.
// Instead I would inject my CQRS business layer, which consumes IWriteEntities.
// See #MikeSW's answer for more info as to why you shouldn't consume a
// generic repository like this directly by your web application layer.
// See http://www.cuttingedge.it/blogs/steven/pivot/entry.php?id=91 and
// http://www.cuttingedge.it/blogs/steven/pivot/entry.php?id=92 for more info
// on what a CQRS business layer that consumes IWriteEntities / IReadEntities
// (and is consumed by an MVC Controller) might look like.
public class RecipeController : Controller
{
private readonly IWriteEntities _entities;
//Using Dependency Injection
public RecipeController(IWriteEntities entities)
{
_entities = entities;
}
[HttpPost]
public ActionResult Create(CreateEditRecipeViewModel model)
{
Mapper.CreateMap<CreateEditRecipeViewModel, Recipe>()
.ForMember(r => r.IngredientAmounts, opt => opt.Ignore());
Recipe recipe = Mapper.Map<CreateEditRecipeViewModel, Recipe>(model);
_entities.Create(recipe);
foreach(Tag t in model.Tags) {
_entities.Create(tag);
}
_entities.SaveChanges();
return RedirectToAction("CreateRecipeSuccess");
}
}
One of my favorite things about this design is that it minimizes the entity storage dependencies on the consumer. In this example the RecipeController is the consumer, but in a real application the consumer would be a command handler. (For a query handler, you would typically consume IReadEntities only because you just want to return data, not mutate any state.) But for this example, let's just use RecipeController as the consumer to examine the dependency implications:
Say you have a set of unit tests written for the above action. In each of these unit tests, you new up the Controller, passing a mock into the constructor. Then, say your customer decides they want to allow people to create a new Cookbook or add to an existing one when creating a new recipe.
With a repository-per-entity or repository-per-aggregate interface pattern, you would have to inject a new repository instance IRepository<Cookbook> into your controller constructor (or using #Chris Hardie's answer, write code to attach yet another repository to the UoW instance). This would immediately make all of your other unit tests break, and you would have to go back to modify the construction code in all of them, passing yet another mock instance, and widening your dependency array. However with the above, all of your other unit tests will still at least compile. All you have to do is write additional test(s) to cover the new cookbook functionality.
I'm (not) sorry to say that the codefizzle, Dyksta's article and the previous answers are wrong. For the simple fact that they use the EF entities as domain (business) objects, which is a big WTF.
Update: For a less technical explanation (in plain words) read Repository Pattern for Dummies
In a nutshell, ANY repository interface should not be coupled to ANY persistence (ORM) detail. The repo interface deals ONLY with objects that makes sense for the rest of the app (domain, maybe UI as in presentation). A LOT of people (with MS leading the pack, with intent I suspect) make the mistake of believing that they can reuse their EF entities or that can be business object on top of them.
While it can happen, it's quite rare. In practice, you'll have a lot of domain objects 'designed' after database rules i.e bad modelling. The repository purpose is to decouple the rest of the app (mainly the business layer) from its persistence form.
How do you decouple it when your repo deals with EF entities (persistence detail) or its methods return IQueryable, a leaking abstraction with wrong semantics for this purpose (IQueryable allows you to build a query, thus implying that you need to know persistence details thus negating the repository's purpose and functionality)?
A domin object should never know about persistence, EF, joins etc. It shouldn't know what db engine you're using or if you're using one. Same with the rest of the app, if you want it to be decoupled from the persistence details.
The repository interface know only about what the higher layer know. This means, that a generic domain repository interface looks like this
public interface IStore<TDomainObject> //where TDomainObject != Ef (ORM) entity
{
void Save(TDomainObject entity);
TDomainObject Get(Guid id);
void Delete(Guid id);
}
The implementation will reside in the DAL and will use EF to work with the db. However the implementation looks like this
public class UsersRepository:IStore<User>
{
public UsersRepository(DbContext db) {}
public void Save(User entity)
{
//map entity to one or more ORM entities
//use EF to save it
}
//.. other methods implementation ...
}
You don't really have a concrete generic repository. The only usage of a concrete generic repository is when ANY domain object is stored in serialized form in a key-value like table. It isn't the case with an ORM.
What about querying?
public interface IQueryUsers
{
PagedResult<UserData> GetAll(int skip, int take);
//or
PagedResult<UserData> Get(CriteriaObject criteria,int skip, int take);
}
The UserData is the read/view model fit for the query context usage.
You can use directly EF for querying in a query handler if you don't mind that your DAL knows about view models and in that case you won't be needing any query repo.
Conclusion
Your business object shouldn't know about EF entities.
The repository will use an ORM, but it never exposes the ORM to the rest of the app, so the repo interface will use only domain objects or view models (or any other app context object that isn't a persistence detail)
You do not tell the repo how to do its work i.e NEVER use IQueryable with a repo interface
If you just want to use the db in a easier/cool way and you're dealing with a simple CRUD app where you don't need (be sure about it) to maintain separation of concerns then skip the repository all together, use directly EF for everything data. The app will be tightly coupled to EF but at least you'll cut the middle man and it will be on purpose not by mistake.
Note that using the repository in the wrong way, will invalidate its use and your app will still be tightly coupled to the persistence (ORM).
In case you believe the ORM is there to magically store your domain objects, it's not. The ORM purpose is to simulate an OOP storage on top of relational tables. It has everything to do with persistence and nothing to do with domain, so don't use the ORM outside persistence.
DbContext is indeed built with the Unit of Work pattern. It allows all of its entities to share the same context as we work with them. This implementation is internal to the DbContext.
However, it should be noted that if you instantiate two DbContext objects, neither of them will see the other's entities that they are each tracking. They are insulated from one another, which can be problematic.
When I build an MVC application, I want to ensure that during the course of the request, all my data access code works off of a single DbContext. To achieve that, I apply the Unit of Work as a pattern external to DbContext.
Here is my Unit of Work object from a barbecue recipe app I'm building:
public class UnitOfWork : IUnitOfWork
{
private BarbecurianContext _context = new BarbecurianContext();
private IRepository<Recipe> _recipeRepository;
private IRepository<Category> _categoryRepository;
private IRepository<Tag> _tagRepository;
public IRepository<Recipe> RecipeRepository
{
get
{
if (_recipeRepository == null)
{
_recipeRepository = new RecipeRepository(_context);
}
return _recipeRepository;
}
}
public void Save()
{
_context.SaveChanges();
}
**SNIP**
I attach all my repositories, which are all injected with the same DbContext, to my Unit of Work object. So long as any repositories are requested from the Unit of Work object, we can be assured that all our data access code will be managed with the same DbContext - awesome sauce!
If I were to use this in an MVC app, I would ensure the Unit of Work is used throughout the request by instantiating it in the controller, and using it throughout its actions:
public class RecipeController : Controller
{
private IUnitOfWork _unitOfWork;
private IRepository<Recipe> _recipeService;
private IRepository<Category> _categoryService;
private IRepository<Tag> _tagService;
//Using Dependency Injection
public RecipeController(IUnitOfWork unitOfWork)
{
_unitOfWork = unitOfWork;
_categoryRepository = _unitOfWork.CategoryRepository;
_recipeRepository = _unitOfWork.RecipeRepository;
_tagRepository = _unitOfWork.TagRepository;
}
Now in our action, we can be assured that all our data access code will use the same DbContext:
[HttpPost]
public ActionResult Create(CreateEditRecipeViewModel model)
{
Mapper.CreateMap<CreateEditRecipeViewModel, Recipe>().ForMember(r => r.IngredientAmounts, opt => opt.Ignore());
Recipe recipe = Mapper.Map<CreateEditRecipeViewModel, Recipe>(model);
_recipeRepository.Create(recipe);
foreach(Tag t in model.Tags){
_tagRepository.Create(tag); //I'm using the same DbContext as the recipe repo!
}
_unitOfWork.Save();
Searching around the internet I found this http://www.thereformedprogrammer.net/is-the-repository-pattern-useful-with-entity-framework/ it's a 2 part article about the usefulness of the repository pattern by Jon Smith.
The second part focuses on a solution. Hope it helps!
Repository with unit of work pattern implementation is a bad one to answer your question.
The DbContext of the entity framework is implemented by Microsoft according to the unit of work pattern. That means the context.SaveChanges is transactionally saving your changes in one go.
The DbSet is also an implementation of the Repository pattern. Do not build repositories that you can just do:
void Add(Customer c)
{
_context.Customers.Add(c);
}
Create a one-liner method for what you can do inside the service anyway ???
There is no benefit and nobody is changing EF ORM to another ORM nowadays...
You do not need that freedom...
Chris Hardie is argumenting that there could be instantiated multiple context objects but already doing this you do it wrong...
Just use an IOC tool you like and setup the MyContext per Http Request and your are fine.
Take ninject for example:
kernel.Bind<ITeststepService>().To<TeststepService>().InRequestScope().WithConstructorArgument("context", c => new ITMSContext());
The service running the business logic gets the context injected.
Just keep it simple stupid :-)
You should consider "command/query objects" as an alternative, you can find a bunch of interesting articles around this area, but here is a good one:
https://rob.conery.io/2014/03/03/repositories-and-unitofwork-are-not-a-good-idea/
When you need a transaction over multiple DB objects, use one command object per command to avoid the complexity of the UOW pattern.
A query object per query is likely unnecessary for most projects. Instead you might choose to start with a 'FooQueries' object
...by which I mean you can start with a Repository pattern for READS but name it as "Queries" to be explicit that it does not and should not do any inserts/updates.
Later, you might find splitting out individual query objects worthwhile if you want to add things like authorization and logging, you could feed a query object into a pipeline.
I always use UoW with EF code first. I find it more performant and easier tot manage your contexts, to prevent memory leaking and such. You can find an example of my workaround on my github: http://www.github.com/stefchri in the RADAR project.
If you have any questions about it feel free to ask them.

Unit of Work, Entity Framework DBContext Scope

I've run into a bit of a problem with EF looking for the best practice for this problem:
public void TestEntityFramework_UOWImplementation()
{
using (UnitOfWorkInventory uow = new UnitOfWorkInventory())
{
IMaterialRepository repos = new MaterialRepository(uow);
Material mat = GetMaterial("Mikes Material", 1);
mat.CostPrice = 20;
repos.InsertOrUpdate(mat);
uow.Commit();
}
}
private Material GetMaterial(string sku, int clientId)
{
IMaterialRepository repos = new MaterialRepository(new UnitOfWorkInventory();
return repos.Find(sku, clientId);
}
In the TestEntityFramework_UOWImplementation() method, its fine, i call create a scope for my unit of work.. and create a repository inside it.
But when i want to getMaterials() as below.. I have no access to the unit of work or the repository, unless i actually pass it as a parameter! This is clearly not particularly nice.
How do people get around this problem??
Thanks in advance!
Neil
In your implementation you wont have access to the Unit of Work like that. What I do is use an IoC container and Dependency Injection to handle it. I have a WCF service that uses Unit of Work with a repository pattern against EF5.
You can read more about repository pattern, unit of work, and EF here but basically what I do is in the constructor of my service class I inject the Unit of Work like so:
private readonly IUnitOfWork uow;
public LoanService(IUnitOfWork unitOfWork)
{
uow = unitOfWork;
}
Then I can use uow.WhateverMethod in my repos anywhere in the service. I use Ninject to handle the injection of IUnitOfWork. Hope it helps you.
If anyone was looking for a way around this, I done something a bit different.
I used a Dependency Injection framework (StructureMap) to handle all DI, so everytime i instantiate a repository it will retrieve the DBContext from the Service Locator of StructureMap. I also make the dbcontext scope to be for the duration of the request from the webserver.
The advantage here being that everytime i retrieve or inject a DBContext, it will retrieve the same context for the duration of the request meaning i can use this across multiple methods and class! I pass the interface type as a generic param to the constructor, meaning that i can point the repo as different contexts. Helpful in applications where there are lots of dbcontexts.
Repo Constructor Eg:
public class PurchaseOrderRepository<TDbContext> : GenericRepository<PurchaseOrder>, IPurchaseOrderRepository<TDbContext> where TDbContext : DbContext
{
public PurchaseOrderRepository()
: base((TDbContext)ObjectFactory.GetInstance<TDbContext>())
{
}
}
Usage:
//resolves the request scope InventoryContext...
var pRepos = new PurchaseOrderRepository<IInventoryContext>();
and the structure map dependency looks like:
For<IInventoryContext>().HttpContextScoped().Use<InventoryContext>();

With Autofac what would be the advantages and disadvantages

I've read about Autofac that it's fast. I've seen the coding involved and it's pretty neat. But I'm not quite sure how to use it. I've used StructureMap, and it has a static ObjectFactory. Ninject has the Kernel, but in Autofac's Google pages they recommend doing something like this :
using( var resolver = builder.Build() ){
var whatINeed = resolver.Resolve<INeedThisService>();
}
It's a WinForms app, so I got an Invalid Object state from doing the above, so I switched to having a global IContainer, and did it this way
using( var resolver = Program.Container.CreateInnerContainer() )
{
var whatINeed = resolver.Resolve<INeedThisService>();
}
I've used it about 3 or 5 times. But is that efficient? Or should I just do something like
var whatINeed = Program.Resolve<INeedThisService>()
and under the covers
internal static TServervice Resolver<TService>(){
if(_container == null ) _container = builder.Build();
return _container.Resolve<TService>();
}
Which would you use, and why? Also is there a penalty for working with CreateInnerContainer()?
I am not an AutoFac expert but do have experience with other Ioc containers. I thought this question would give me a reason to try AutoFac.
Designs based on Ioc containers should strive to isolate all code from having access to the container except at the entry point or host level. I created the following example using AutoFac and WinForms to show how a form could access a service via it's constructor.
I'm not quite sure why you thought you needed the inner container. Perhaps you could comment and I can provide a more detailed response.
static class Program
{
[STAThread]
static void Main()
{
var builder = new ContainerBuilder();
builder.Register<TheService>().As<INeedThisService>();
builder.Register(f => new Form1(f.Resolve<INeedThisService>())).As<Form1>();
using (var container = builder.Build())
{
Application.Run(container.Resolve<Form1>());
}
}
}
public interface INeedThisService { }
public class TheService : INeedThisService
{
public TheService() { Console.WriteLine("ctor ThisService"); }
}
public partial class Form1 : Form
{
public Form1(INeedThisService service)
{
Console.WriteLine("ctor Form1");
InitializeComponent();
}
}
1) From the examples you gave I could make an assumption that you are trying to use IOC container primarily as service locator. Although almost all containers support it, main usage would be Dependency Injection. That means you should avoid calling Resolve method at all and let container inject all dependencies for you. The differences between two of them (Service Locator and Dependency Injection) is beyond this topic.
2) If you still want to use it as service locator you can just use root container (Program.Container in your case) without creating inner containers. The sequence would be:
Create ContainerBuilder
Register you components in the builder
Create root container: builder.Build()
Access root container to resolve component instances
3) Container hierarchies can be useful in the scenarios where you need singleton behaviour in different scopes:
Global \ Session \ Request (Web applications)
Application \ Plugin (Desktop plugin-based applications)
BTW Autofac encourage people to use tagged contexts to solve such problems:
As Mark Lindell pointed out, you don't generally need to access the container directly in an Autofac application.
The recommended approach is to access it once, as Mark has done, when the application starts up.
Other components that subsequently need to create objects can declare a constructor parameter of type IContext, which Autofac will automatically inject.
An alternative, that does not require any dependency on the Autofac assembly, is to use Generated Factories as described at: http://code.google.com/p/autofac/wiki/DelegateFactories
Hope this helps!