I'm trying to update the value of a column using another column's value in Scala.
This is the data in my dataframe :
+-------------------+------+------+-----+------+----+--------------------+-----------+
|UniqueRowIdentifier| _c0| _c1| _c2| _c3| _c4| _c5|isBadRecord|
+-------------------+------+------+-----+------+----+--------------------+-----------+
| 1| 0| 0| Name| 0|Desc| | 0|
| 2| 2.11| 10000|Juice| 0| XYZ|2016/12/31 : Inco...| 0|
| 3|-0.500|-24.12|Fruit| -255| ABC| 1994-11-21 00:00:00| 0|
| 4| 0.087| 1222|Bread|-22.06| | 2017-02-14 00:00:00| 0|
| 5| 0.087| 1222|Bread|-22.06| | | 0|
+-------------------+------+------+-----+------+----+--------------------+-----------+
Here column _c5 contains a value which is incorrect(value in Row2 has the string Incorrect) based on which I'd like to update its isBadRecord field to 1.
Is there a way to update this field?
You can use withColumn api and use one of the functions which meet your needs to fill 1 for bad record.
For your case you can write a udf function
def fillbad = udf((c5 : String) => if(c5.contains("Incorrect")) 1 else 0)
And call it as
val newDF = dataframe.withColumn("isBadRecord", fillbad(dataframe("_c5")))
Instead of reasoning about updating it, I'll suggest you think about it as you would in SQL; you could do the following:
import org.spark.sql.functions.when
val spark: SparkSession = ??? // your spark session
val df: DataFrame = ??? // your dataframe
import spark.implicits._
df.select(
$"UniqueRowIdentifier", $"_c0", $"_c1", $"_c2", $"_c3", $"_c4",
$"_c5", when($"_c5".contains("Incorrect"), 1).otherwise(0) as "isBadRecord")
Here is a self-contained script that you can copy and paste on your Spark shell to see the result locally:
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
sc.setLogLevel("ERROR")
val schema =
StructType(Seq(
StructField("UniqueRowIdentifier", IntegerType),
StructField("_c0", DoubleType),
StructField("_c1", DoubleType),
StructField("_c2", StringType),
StructField("_c3", DoubleType),
StructField("_c4", StringType),
StructField("_c5", StringType),
StructField("isBadRecord", IntegerType)))
val contents =
Seq(
Row(1, 0.0 , 0.0 , "Name", 0.0, "Desc", "", 0),
Row(2, 2.11 , 10000.0 , "Juice", 0.0, "XYZ", "2016/12/31 : Incorrect", 0),
Row(3, -0.5 , -24.12, "Fruit", -255.0, "ABC", "1994-11-21 00:00:00", 0),
Row(4, 0.087, 1222.0 , "Bread", -22.06, "", "2017-02-14 00:00:00", 0),
Row(5, 0.087, 1222.0 , "Bread", -22.06, "", "", 0)
)
val df = spark.createDataFrame(sc.parallelize(contents), schema)
df.show()
val withBadRecords =
df.select(
$"UniqueRowIdentifier", $"_c0", $"_c1", $"_c2", $"_c3", $"_c4",
$"_c5", when($"_c5".contains("Incorrect"), 1).otherwise(0) as "isBadRecord")
withBadRecords.show()
Whose relevant output is the following:
+-------------------+-----+-------+-----+------+----+--------------------+-----------+
|UniqueRowIdentifier| _c0| _c1| _c2| _c3| _c4| _c5|isBadRecord|
+-------------------+-----+-------+-----+------+----+--------------------+-----------+
| 1| 0.0| 0.0| Name| 0.0|Desc| | 0|
| 2| 2.11|10000.0|Juice| 0.0| XYZ|2016/12/31 : Inco...| 0|
| 3| -0.5| -24.12|Fruit|-255.0| ABC| 1994-11-21 00:00:00| 0|
| 4|0.087| 1222.0|Bread|-22.06| | 2017-02-14 00:00:00| 0|
| 5|0.087| 1222.0|Bread|-22.06| | | 0|
+-------------------+-----+-------+-----+------+----+--------------------+-----------+
+-------------------+-----+-------+-----+------+----+--------------------+-----------+
|UniqueRowIdentifier| _c0| _c1| _c2| _c3| _c4| _c5|isBadRecord|
+-------------------+-----+-------+-----+------+----+--------------------+-----------+
| 1| 0.0| 0.0| Name| 0.0|Desc| | 0|
| 2| 2.11|10000.0|Juice| 0.0| XYZ|2016/12/31 : Inco...| 1|
| 3| -0.5| -24.12|Fruit|-255.0| ABC| 1994-11-21 00:00:00| 0|
| 4|0.087| 1222.0|Bread|-22.06| | 2017-02-14 00:00:00| 0|
| 5|0.087| 1222.0|Bread|-22.06| | | 0|
+-------------------+-----+-------+-----+------+----+--------------------+-----------+
The best option is to create a UDF and try to convert it do Date format.
If it can be converted then return 0 else return 1
This work even if you have an bad date format
val spark = SparkSession.builder().master("local")
.appName("test").getOrCreate()
import spark.implicits._
//create test dataframe
val data = spark.sparkContext.parallelize(Seq(
(1,"1994-11-21 Xyz"),
(2,"1994-11-21 00:00:00"),
(3,"1994-11-21 00:00:00")
)).toDF("id", "date")
// create udf which tries to convert to date format
// returns 0 if success and returns 1 if failure
val check = udf((value: String) => {
Try(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(value)) match {
case Success(d) => 1
case Failure(e) => 0
}
})
// Add column
data.withColumn("badData", check($"date")).show
Hope this helps!
Related
Given the code below, how would I go about adding a count column? (e.g. .count("*").as("count"))
Final output to look like something like this:
+---+------+------+-----------------------------+------
| id|sum(d)|max(b)|concat_ws(,, collect_list(s))|count|
+---+------+------+-----------------------------+------
| 1| 1.0| true| a. | 1 |
| 2| 4.0| true| b,b| 2 |
| 3| 3.0| true| c. | 1 |
Current code is below:
val df =Seq(
(1, 1.0, true, "a"),
(2, 2.0, false, "b")
(3, 3.0, false, "b")
(2, 2.0, false, "c")
).toDF("id","d","b","s")
val dataTypes: Map[String, DataType] = df.schema.map(sf => (sf.name,sf.dataType)).toMap
def genericAgg(c:String) = {
dataTypes(c) match {
case DoubleType => sum(col(c))
case StringType => concat_ws(",",collect_list(col(c))) // "append"
case BooleanType => max(col(c))
}
}
val aggExprs: Seq[Column] = df.columns.filterNot(_=="id")
.map(c => genericAgg(c))
df
.groupBy("id")
.agg(aggExprs.head,aggExprs.tail:_*)
.show()
You can simply append count("*").as("count") to aggExprs.tail in your agg, as shown below:
df.
groupBy("id").agg(aggExprs.head, aggExprs.tail :+ count("*").as("count"): _*).
show
// +---+------+------+-----------------------------+-----+
// | id|sum(d)|max(b)|concat_ws(,, collect_list(s))|count|
// +---+------+------+-----------------------------+-----+
// | 1| 1.0| true| a| 1|
// | 3| 3.0| false| b| 1|
// | 2| 4.0| false| b,c| 2|
// +---+------+------+-----------------------------+-----+
I want to covert row into column using spark dataframe.
My table is like this
Eno,Name
1,A
1,B
1,C
2,D
2,E
I want to convert it into
Eno,n1,n2,n3
1,A,B,C
2,D,E,Null
I used this below code :-
val r = spark.sqlContext.read.format("csv").option("header","true").option("inferschema","true").load("C:\\Users\\axy\\Desktop\\abc2.csv")
val n =Seq("n1","n2","n3"
r
.groupBy("Eno")
.pivot("Name",n).agg(expr("coalesce(first(Name),3)").cast("double")).show()
But I am getting result as-->
+---+----+----+----+
|Eno| n1| n2| n3|
+---+----+----+----+
| 1|null|null|null|
| 2|null|null|null|
+---+----+----+----+
Can anyone help to get the desire result.
val m= map(lit("A"), lit("n1"), lit("B"),lit("n2"), lit("C"), lit("n3"), lit("D"), lit("n1"), lit("E"), lit("n2"))
val df= Seq((1,"A"),(1,"B"),(1,"C"),(2,"D"),(2,"E")).toDF("Eno","Name")
df.withColumn("new", m($"Name")).groupBy("Eno").pivot("new").agg(first("Name"))
+---+---+---+----+
|Eno| n1| n2| n3|
+---+---+---+----+
| 1| A| B| C|
| 2| D| E|null|
+---+---+---+----+
import org.apache.spark.sql.functions._
import spark.implicits._
val df= Seq((1,"A"),(1,"B"),(1,"C"),(2,"D"),(2,"E")).toDF("Eno","Name")
val getName=udf {(names: Seq[String],i : Int) => if (names.size>i) names(i) else null}
val tdf=df.groupBy($"Eno").agg(collect_list($"name").as("names"))
val ndf=(0 to 2).foldLeft(tdf){(ndf,i) => ndf.withColumn(s"n${i}",getName($"names",lit(i))) }.
drop("names")
ndf.show()
+---+---+---+----+
|Eno| n0| n1| n2|
+---+---+---+----+
| 1| A| B| C|
| 2| D| E|null|
+---+---+---+----+
I have three columns in df
Col1,col2,col3
X,x1,x2
Z,z1,z2
Y,
X,x3,x4
P,p1,p2
Q,q1,q2
Y
I want to do the following
when col1=x,store the value of col2 and col3
and assign those column values to next row when col1=y
expected output
X,x1,x2
Z,z1,z2
Y,x1,x2
X,x3,x4
P,p1,p2
Q,q1,q2
Y,x3,x4
Any help would be appreciated
Note:-spark 1.6
Here's one approach using Window function with steps as follows:
Add row-identifying column (not needed if there is already one) and combine non-key columns (presumably many of them) into one
Create tmp1 with conditional nulls and tmp2 using last/rowsBetween Window function to back-fill with the last non-null value
Create newcols conditionally from cols and tmp2
Expand newcols back to individual columns using foldLeft
Note that this solution uses Window function without partitioning, thus may not work for large dataset.
val df = Seq(
("X", "x1", "x2"),
("Z", "z1", "z2"),
("Y", "", ""),
("X", "x3", "x4"),
("P", "p1", "p2"),
("Q", "q1", "q2"),
("Y", "", "")
).toDF("col1", "col2", "col3")
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
val colList = df.columns.filter(_ != "col1")
val df2 = df.select($"col1", monotonically_increasing_id.as("id"),
struct(colList.map(col): _*).as("cols")
)
val df3 = df2.
withColumn( "tmp1", when($"col1" === "X", $"cols") ).
withColumn( "tmp2", last("tmp1", ignoreNulls = true).over(
Window.orderBy("id").rowsBetween(Window.unboundedPreceding, 0)
) )
df3.show
// +----+---+-------+-------+-------+
// |col1| id| cols| tmp1| tmp2|
// +----+---+-------+-------+-------+
// | X| 0|[x1,x2]|[x1,x2]|[x1,x2]|
// | Z| 1|[z1,z2]| null|[x1,x2]|
// | Y| 2| [,]| null|[x1,x2]|
// | X| 3|[x3,x4]|[x3,x4]|[x3,x4]|
// | P| 4|[p1,p2]| null|[x3,x4]|
// | Q| 5|[q1,q2]| null|[x3,x4]|
// | Y| 6| [,]| null|[x3,x4]|
// +----+---+-------+-------+-------+
val df4 = df3.withColumn( "newcols",
when($"col1" === "Y", $"tmp2").otherwise($"cols")
).select($"col1", $"newcols")
df4.show
// +----+-------+
// |col1|newcols|
// +----+-------+
// | X|[x1,x2]|
// | Z|[z1,z2]|
// | Y|[x1,x2]|
// | X|[x3,x4]|
// | P|[p1,p2]|
// | Q|[q1,q2]|
// | Y|[x3,x4]|
// +----+-------+
val dfResult = colList.foldLeft( df4 )(
(accDF, c) => accDF.withColumn(c, df4(s"newcols.$c"))
).drop($"newcols")
dfResult.show
// +----+----+----+
// |col1|col2|col3|
// +----+----+----+
// | X| x1| x2|
// | Z| z1| z2|
// | Y| x1| x2|
// | X| x3| x4|
// | P| p1| p2|
// | Q| q1| q2|
// | Y| x3| x4|
// +----+----+----+
[UPDATE]
For Spark 1.x, last(colName, ignoreNulls) isn't available in the DataFrame API. A work-around is to revert to use Spark SQL which supports ignore-null in its last() method:
df2.
withColumn( "tmp1", when($"col1" === "X", $"cols") ).
createOrReplaceTempView("df2table")
// might need to use registerTempTable("df2table") instead
val df3 = spark.sqlContext.sql("""
select col1, id, cols, tmp1, last(tmp1, true) over (
order by id rows between unbounded preceding and current row
) as tmp2
from df2table
""")
Yes, there is a lag function that requires ordering
import org.apache.spark.sql.expressions.Window.orderBy
import org.apache.spark.sql.functions.{coalesce, lag}
case class Temp(a: String, b: Option[String], c: Option[String])
val input = ss.createDataFrame(
Seq(
Temp("A", Some("a1"), Some("a2")),
Temp("D", Some("d1"), Some("d2")),
Temp("B", Some("b1"), Some("b2")),
Temp("E", None, None),
Temp("C", None, None)
))
+---+----+----+
| a| b| c|
+---+----+----+
| A| a1| a2|
| D| d1| d2|
| B| b1| b2|
| E|null|null|
| C|null|null|
+---+----+----+
val order = orderBy($"a")
input
.withColumn("b", coalesce($"b", lag($"b", 1).over(order)))
.withColumn("c", coalesce($"c", lag($"c", 1).over(order)))
.show()
+---+---+---+
| a| b| c|
+---+---+---+
| A| a1| a2|
| B| b1| b2|
| C| b1| b2|
| D| d1| d2|
| E| d1| d2|
+---+---+---+
I have RDD[String] according to device,timestamp,on/off format.How do I calculate amount of time each device is swiched on.What is the best way of doing this in spark ?
on means 1 and off means 0
E.g
A,1335952933,1
A,1335953754,0
A,1335994294,1
A,1335995228,0
B,1336001513,1
B,1336002622,0
B,1336006905,1
B,1336007462,0
Intermediate step 1
A,((1335953754 - 1335952933),(1335995228 - 1335994294))
B,((1336002622- 1336001513),(1336007462 - 1336006905))
Intermediate step 2
(A,(821,934))
(B,(1109,557))
output
(A,1755)
(B,1666)
I'll assume that RDD[String] can be parsed into a RDD of DeviceLog where DeviceLog is:
case class DeviceLog(val id: String, val timestamp: Long, val onoff: Int)
The DeviceLog class is pretty straight forward.
// initialize contexts
val sc = new SparkContext(conf)
val sqlContext = new HiveContext(sc)
Those initialize the spark context and sql context that we'll use it for dataframes.
Step 1:
val input = List(
DeviceLog("A",1335952933,1),
DeviceLog("A",1335953754,0),
DeviceLog("A",1335994294,1),
DeviceLog("A",1335995228,0),
DeviceLog("B",1336001513,1),
DeviceLog("B",1336002622,0),
DeviceLog("B",1336006905,1),
DeviceLog("B",1336007462,0))
val df = input.toDF()
df.show()
+---+----------+-----+
| id| timestamp|onoff|
+---+----------+-----+
| A|1335952933| 1|
| A|1335953754| 0|
| A|1335994294| 1|
| A|1335995228| 0|
| B|1336001513| 1|
| B|1336002622| 0|
| B|1336006905| 1|
| B|1336007462| 0|
+---+----------+-----+
Step 2: Partition by device id, order by timestamp and retain pair information (on/off)
val wSpec = Window.partitionBy("id").orderBy("timestamp")
val df1 = df
.withColumn("spend", lag("timestamp", 1).over(wSpec))
.withColumn("one", lag("onoff", 1).over(wSpec))
.where($"spend" isNotNull)
df1.show()
+---+----------+-----+----------+---+
| id| timestamp|onoff| spend|one|
+---+----------+-----+----------+---+
| A|1335953754| 0|1335952933| 1|
| A|1335994294| 1|1335953754| 0|
| A|1335995228| 0|1335994294| 1|
| B|1336002622| 0|1336001513| 1|
| B|1336006905| 1|1336002622| 0|
| B|1336007462| 0|1336006905| 1|
+---+----------+-----+----------+---+
Step 3: Compute upTime and filter by criteria
val df2 = df1
.withColumn("upTime", $"timestamp" - $"spend")
.withColumn("criteria", $"one" - $"onoff")
.where($"criteria" === 1)
df2.show()
| id| timestamp|onoff| spend|one|upTime|criteria|
+---+----------+-----+----------+---+------+--------+
| A|1335953754| 0|1335952933| 1| 821| 1|
| A|1335995228| 0|1335994294| 1| 934| 1|
| B|1336002622| 0|1336001513| 1| 1109| 1|
| B|1336007462| 0|1336006905| 1| 557| 1|
+---+----------+-----+----------+---+------+--------+
Step 4: group by id and sum
val df3 = df2.groupBy($"id").agg(sum("upTime"))
df3.show()
+---+-----------+
| id|sum(upTime)|
+---+-----------+
| A| 1755|
| B| 1666|
+---+-----------+
Can any one give me an example UDTF (eg; explode) written in scala which returns multiple row and use it as UDF in SparkSQL?
Table: table1
+------+----------+----------+
|userId|someString| varA|
+------+----------+----------+
| 1| example1| [0, 2, 5]|
| 2| example2|[1, 20, 5]|
+------+----------+----------+
I'd like to create the following Scala code:
def exampleUDTF(var: Seq[Int]) = <Return Type???> {
// code to explode varA field ???
}
sqlContext.udf.register("exampleUDTF",exampleUDTF _)
sqlContext.sql("FROM table1 SELECT userId, someString, exampleUDTF(varA)").collect().foreach(println)
Expected output:
+------+----------+----+
|userId|someString|varA|
+------+----------+----+
| 1| example1| 0|
| 1| example1| 2|
| 1| example1| 5|
| 2| example2| 1|
| 2| example2| 20|
| 2| example2| 5|
+------+----------+----+
You can't do this with a UDF. A UDF can only add a single column to a DataFrame. There is, however, a function called DataFrame.explode, which you can use instead. To do it with your example, you would do this:
import org.apache.spark.sql._
val df = Seq(
(1,"example1", Array(0,2,5)),
(2,"example2", Array(1,20,5))
).toDF("userId", "someString", "varA")
val explodedDf = df.explode($"varA"){
case Row(arr: Seq[Int]) => arr.toArray.map(a => Tuple1(a))
}.drop($"varA").withColumnRenamed("_1", "varA")
+------+----------+-----+
|userId|someString| varA|
+------+----------+-----+
| 1| example1| 0|
| 1| example1| 2|
| 1| example1| 5|
| 2| example2| 1|
| 2| example2| 20|
| 2| example2| 5|
+------+----------+-----+
Note that explode takes a function as an argument. So even though you can't create a UDF to do what you want, you can create a function to pass to explode to do what you want. Like this:
def exploder(row: Row) : Array[Tuple1[Int]] = {
row match { case Row(arr) => arr.toArray.map(v => Tuple1(v)) }
}
df.explode($"varA")(exploder)
That's about the best you are going to get in terms of recreating a UDTF.
Hive Table:
name id
["Subhajit Sen","Binoy Mondal","Shantanu Dutta"] 15
["Gobinathan SP","Harsh Gupta","Rahul Anand"] 16
Creating a scala function :
def toUpper(name: Seq[String]) = (name.map(a => a.toUpperCase)).toSeq
Registering function as UDF :
sqlContext.udf.register("toUpper",toUpper _)
Calling the UDF using sqlContext and storing output as DataFrame object :
var df = sqlContext.sql("SELECT toUpper(name) FROM namelist").toDF("Name")
Exploding the DataFrame :
df.explode(df("Name")){case org.apache.spark.sql.Row(arr: Seq[String]) => arr.toSeq.map(v => Tuple1(v))}.drop(df("Name")).withColumnRenamed("_1","Name").show
Result:
+--------------+
| Name|
+--------------+
| SUBHAJIT SEN|
| BINOY MONDAL|
|SHANTANU DUTTA|
| GOBINATHAN SP|
| HARSH GUPTA|
| RAHUL ANAND|
+--------------+