mongodb/mongoose - when to use subdocument and when to use new collection - mongodb

I would like to know if there is a rule of thumb about when to use a new document and when to use a sub document. In sql database I used to break all realtions to seperate tables by the rule of normalization and connect them with keys , but I can't find a good approch about what to do in mongodb ( I don't know how other no-sql databases are handled).
Any help will be appreicated.
Kind regards.

Though no fixed rules, there are some general guidelines which are intuitive enough to follow while modeling data in noSql.
Nearly all cases of 1-1 can be handled with sub-documents. For example: A user has an address. All likelihood is that address would be unique for each user (in context of your system, say a social website). So, keeping address in another collection would be a waste of space and queries. Address sub-document is the best choice.
Another example: Hundreds of employees share a same building/address. In this case keeping 1-1 is a poor use of space and will cost you a lot of updates whenever a slight change happens in any of the addresses because it's being replicated across multiple employee documents as sub-document. Therefore, an address should have many employees i.e. 1 to many relationship
You must have noticed that in noSql there are multiple ways to represent 1 to many relationship.
Keep an array of references. Choose this if you're sure the size of the array won't get too big and preferably the document containing the array is not expected to be updated a lot.
Keep an array of sub-documents. A handy option if the sub-documents don't qualify for a separate collection and you don't run the risk of hitting 16Mb document size limit. (thanks greyfairer for reminding!)
Sql style foreign key. Use this if 1 and 2 are not good enough or you prefer this style over them
Modeling documents for retrieval, Document design considerations and Modeling Relationships from Couchbase (another noSql database) are really good reads and equally applicable to mongodb.

Related

Single big collection for all products vs Separate collections for each Product category

I'm new to NoSQL and I'm trying to figure out the best way to model my database. I'll be using ArangoDB in the project but I think this question also stands if using MongoDB.
The database will store 12 categories of products. Each category is expected to hold hundreds or thousands of products. Products will also be added / removed constantly.
There will be a number of common fields across all products, but each category will also have unique fields / different restrictions to data.
Keep in mind that there are instances where I'd need to query all the categories at the same time, for example to search a product across all categories, and other instances where I'll only need to query one category.
Should I create one single collection "Product" and use a field to indicate the category, or create a seperate collection for each category?
I've read many questions related to this idea (1 collection vs many) but I haven't been able to reach a conclusion, other than "it dependes".
So my question is: In this specific use case which option would be most optimal, multiple collections vs single collection + sharding, in terms of performance and speed ?
Any help would be appreciated.
As you mentioned, you need to play with your data and use-case. You will have better picture.
Some decisions required as below.
Decide the number of documents you will have in near future. If you will have 1m documents in an year, then try with at least 3m data
Decide the number of indices required.
Decide the number of writes, reads per second.
Decide the size of documents per category.
Decide the query pattern.
Some inputs based on the requirements
If you have more writes with more indices, then single monolithic collection will be slower as multiple indices needs to be updated.
As you have different set of fields per category, you could try with multiple collections.
There is $unionWith to combine data from multiple collections. But do check the performance it purely depends on the above decisions. Note this open issue also.
If you decide to go with monolithic collection, defer the sharding. Implement this once you found that queries are slower.
If you have more writes on the same document, writes will be executed sequentially. It will slow down your read also.
Think of reclaiming the disk space when more data is cleared from the collections. Multiple collections do good here.
The point which forces me to suggest monolithic collections is that I'd need to query all the categories at the same time. You may need to add more categories, but combining all of them in single response would not be better in terms of performance.
As you don't really have a join use case like in RDBMS, you can go with single monolithic collection from model point of view. I doubt you could have a join key.
If any of my points are incorrect, please let me know.
To SQL or to NoSQL?
I think that before you implement this in NoSQL, you should ask yourself why you are doing that. I quite like NoSQL but some data is definitely a better fit to that model than others.
The data you are describing is a classic case for a relational SQL DB. That's fine if it's a hobby project and you want to try NoSQL, but if this is for a production environment or client, you are likely making the situation more difficult for them.
Relational or non-relational?
You mention common fields across all products. If you wish to update these fields and have those updates reflected in all products, then you have relational data.
Background
It may be worth reading Sarah Mei 2013 article about this. Skip to the section "How MongoDB Stores Data" and read from there. Warning: the article is called "Why You Should Never Use MongoDB" and is (perhaps intentionally) somewhat biased against Mongo, so it's important to read this through the correct lens. The message you should get from this article is that MongoDB is not a good fit for every data type.
Two strategies for handling relational data in Mongo:
every time you update one of these common fields, update every product's document with the new common field data. This is generally only ok if you have few updates or few documents, but not both.
use references and do joins.
In Mongo, joins typically happen code-side (multiple db calls)
In Arango (and in other graph dbs, as well as some key-value stores), the joins happen db-side (single db call)
Decisions
These are important factors to consider when deciding which DB to use and how to model your data
I've used MongoDB, ArangoDB and Neo4j.
Mongo definitely has the best tooling and it's easy to find help, but I don't believe it's good fit in this case
Arango is quite pleasant to work with, but doesn't yet have the adoption that it deserves
I wouldn't recommend Neo4j to anyone looking for a NoSQL solution, as its nodes and relations only support flat properties (no nesting, so not real documents)
It may also be worth considering MariaDB or Postgres

MongoDB aggregation from few operations

Every user in our system (Like Facebook and twitter) has an option to add other users to his predefined lists like: *"Favorites", "Follow", "Blocked", "Closed Friends". Than, we want to allow him to search the list, filter and see commutative data from all the above list. for example:
UserA {
IsFollow: 1,
IsFavorite: 0
...
IsBlocked: 0
}
We also want to keep some additional information when user adding another user to one of the above list such addingDate.
Option One is to manage different collections like "Favorites", "Follow", "Blocked", "Closed Friends"
Option Two - to manage one collection like "Relations" and keep all the data on that collection without the needs of using lookup...
Option Three - Use option One but create a flat collection with all the relevant data from each table (RabbitMQ, transaction update, etc).
Since I'm new in MongoDB (I'm migrating the system from MS SQL), I'm wondering what is the best approach for high scale system.
I would suggest you go with option 2, where all the keys will be present in one document.
MongoDB recommends a schema design where all the data are embedded into a single document. They claim that this will lead to less read-write operations to DB and faster CRUD operations compared to the relational mapping approach.
But, there is a catch here. The data should be embedded in a single document only if the relations are One-to-One, One-to-Few, or One-to-Many.
DO NOT GO WITH DOCUMENT EMBEDDING APPROACH IF YOUR DATA MAPPING RELATION IS One-to-Squillions. I recommend you to read this article
The reason why I am not recommending Option-1 to have a separate collection is you will have to make more requests to a DB for each and every collection linkage. Although the $lookup stage is fast, it is not as efficient compared to the embedding approach.
As far as option 3 goes, it's a viable approach (If you use transactions properly and effectively), but it adds up complexity in the coding side.
I have personally used both Option-1 & Option-2 approaches, and option-1 has always left the AWS-EC2 instance running MongoDB to higher CPU and RAM usage. As far as option-2 goes, I have a collection that has almost 1000 array elements (With key indexed) and 15K keys in each records (I am not joking) and MongoDB had no issues processing it. Just make sure that you use the Projection of return documents everywhere.
So, go for Option-2 as a standard approach and Option-3 for One-to-Squillions relation mapping.
For referencing two or more collections, make sure that you use MongoDB generated ObjectId instead of your own custom referencing since have seen a minor performance impact on using multi-document relation-mapping other than ObjectId (Even if that particular key is indexed)
Hope this helps. Reach me out if you have additional queries

MongoDB and one-to-many relation

I am trying to come up with a rough design for an application we're working on. What I'd like to know is, if there is a way to directly map a one to many relation in mongo.
My schema is like this:
There are a bunch of Devices.
Each device is known by it's name/ID uniquely.
Each device, can have multiple interfaces.
These interfaces can be added by a user in the front end at any given
time.
An interface is known uniquely by it's ID, and can be associated with
only one Device.
A device can contain at least an order of 100 interfaces.
I was going through MongoDB documentation wherein they mention things relating to Embedded document vs. multiple collections. By no means am I having a detailed clarity over this as I've just started with Mongo and meteor.
Question is, what could seemingly be a better approach? Having multiple small collections or having one big embedded collection. I know this question is somewhat subjective, I just need some clarity from folks who have more expertise in this field.
Another question is, suppose I go with the embedded model, is there a way to update only a part of the document (specific to the interface alone) so that as and when itf is added, it can be inserted into the same device document?
It depends on the purpose of the application.
Big document
A good example on where you'd want a big embedded collection would be if you are not going to modify (normally) the data but you're going to query them a lot. In my application I use this for storing pre-processed trips with all the information. Therefore when someone wants to consult this trip, all the information is located in a single document. However if your query is based on a value that is embedded in a trip, inside a list this would be very slow. If that's the case I'd recommend creating another collection with a relation between both collections. Also for updating part of a document it would be slow since it would require you to fetch the whole document and then update it.
Small documents with relations
If you plan on modify the data a lot, I'd recommend you to stick to a reference to another collection. With small documents, this will allow you to update any collection quicker. If you want to model a unique relation you may consider using a unique index in mongo. This can be done using: db.members.createIndex( { "user_id": 1 }, { unique: true } ).
Therefore:
Big object: Great for querying data but slow for complex queries.
Small related collections: Great for updating but requires several queries on distinct collections.

When should I create a new collections in MongoDB?

So just a quick best practice question here. How do I know when I should create new collections in MongoDB?
I have an app that queries TV show data. Should each show have its own collection, or should they all be store within one collection with relevant data in the same document. Please explain why you chose the approach you did. (I'm still very new to MongoDB. I'm used to MySql.)
The Two Most Popular Approaches to Schema Design in MongoDB
Embed data into documents and store them in a single collection.
Normalize data across multiple collections.
Embedding Data
There are several reasons why MongoDB doesn't support joins across collections, and I won't get into all of them here. But the main reason why we don't need joins is because we can embed relevant data into a single hierarchical JSON document. We can think of it as pre-joining the data before we store it. In the relational database world, this amounts to denormalizing our data. In MongoDB, this is about the most routine thing we can do.
Normalizing Data
Even though MongoDB doesn't support joins, we can still store related data across multiple collections and still get to it all, albeit in a round about way. This requires us to store a reference to a key from one collection inside another collection. It sounds similar to relational databases, but MongoDB doesn't enforce any of key constraints for us like most relational databases do. Enforcing key constraints is left entirely up to us. We're good enough to manage it though, right?
Accessing all related data in this way means we're required to make at least one query for every collection the data is stored across. It's up to each of us to decide if we can live with that.
When to Embed Data
Embed data when that embedded data will be accessed at the same time as the rest of the document. Pre-joining data that is frequently used together reduces the amount of code we have to write to query across multiple collections. It also reduces the number of round trips to the server.
Embed data when that embedded data only pertains to that single document. Like most rules, we need to give this some thought before blindly following it. If we're storing an address for a user, we don't need to create a separate collection to store addresses just because the user might have a roommate with the same address. Remember, we're not normalizing here, so duplicating data to some degree is ok.
Embed data when you need "transaction-like" writes. Prior to v4.0, MongoDB did not support transactions, though it does guarantee that a single document write is atomic. It'll write the document or it won't. Writes across multiple collections could not be made atomic, and update anomalies could occur for how many ever number of scenarios we can imagine. This is no longer the case since v4.0, however it is still more typical to denormalize data to avoid the need for transactions.
When to Normalize Data
Normalize data when data that applies to many documents changes frequently. So here we're talking about "one to many" relationships. If we have a large number of documents that have a city field with the value "New York" and all of a sudden the city of New York decides to change its name to "New-New York", well then we have to update a lot of documents. Got anomalies? In cases like this where we suspect other cities will follow suit and change their name, then we'd be better off creating a cities collection containing a single document for each city.
Normalize data when data grows frequently. When documents grow, they have to be moved on disk. If we're embedding data that frequently grows beyond its allotted space, that document will have to be moved often. Since these documents are bigger each time they're moved, the process only grows more complex and won't get any better over time. By normalizing those embedded parts that grow frequently, we eliminate the need for the entire document to be moved.
Normalize data when the document is expected to grow larger than 16MB. Documents have a 16MB limit in MongoDB. That's just the way things are. We should start breaking them up into multiple collections if we ever approach that limit.
The Most Important Consideration to Schema Design in MongoDB is...
How our applications access and use data. This requires us to think? Uhg! What data is used together? What data is used mostly as read-only? What data is written to frequently? Let your applications data access patterns drive your schema, not the other way around.
The scope you've described is definitely not too much for "one collection". In fact, being able to store everything in a single place is the whole point of a MongoDB collection.
For the most part, you don't want to be thinking about querying across combined tables as you would in SQL. Unlike in SQL, MongoDB lets you avoid thinking in terms of "JOINs"--in fact MongoDB doesn't even support them natively.
See this slideshare:
http://www.slideshare.net/mongodb/migrating-from-rdbms-to-mongodb?related=1
Specifically look at slides 24 onward. Note how a MongoDB schema is meant to replace the multi-table schemas customary to SQL and RDBMS.
In MongoDB a single document holds all information regarding a record. All records are stored in a single collection.
Also see this question:
MongoDB query multiple collections at once

MongoDB - One Collection Using Indexes

Ok so the more and more I develop in Mongodb i start to wonder about the need for multiple collections vs having one large collection with indexes (since columns and fields can be different for each document unlike tabular data). If i am trying to develop in the most efficient way possible (meaning less code and reusable code) then can I use one collection for all documents and just index on a field. By having all documents in one collection with indexes then i can reuse all my form processing code and other code since it will all be inserting into the same collection.
For Example:
Lets say i am developing a contact manager and I have two types of contacts "individuals" and "businesses". My original thought was to create a collection called individuals and a second collection called businesses. But that was because im used to developing in sql where yes this would be appropriate since columns would be different for each table. The more i started to think about the flexibility of document dbs the more I started to think, "do I really need two collections for this?" If i just add a field to each document called "contact type" and index on that, do i really need two collections? Since the fields/columns in each document do not have to be the same for all (like in sql) then each document can have their own fields as long as i have a "document type" field and an index on that field.
So then i took that concept and started to think, if i only need one collection for "individuals" and "businesses" then do i even need a separate collection for "Users" or "Contact History" or any other data. In theory couldn't i build the entire solution in once collection and just have a field in each document that specifield the "type" and index on it such as "Users", "Individual Contact", "Business Contacts", "Contact History", etc, and if it is a document related to another document i can index on the "parent key/foreign" Id field...
This would allow me to code the front end dynamically since the form processing code would all be the same (inserting into the same collection). This would save a lot of coding but i want to make sure by using indexes and secondary indexes that the db would still run fast and not cause future problems as the collection grew. As you can imagine, if everything was in one collection there might be hundreds of thousands even millions of documents in this collection as the user base grows but it would have indexes and secondary indexes to optimize performance.
My question is: Is this a common method mongodb developers use? Why or why not? What are the downfalls, if any? If this is a commonly used method, please also give any positives to using this method. thank you.
This is a really big point in Mongo and the answer is a little bit more of an art than science. Having one collection full of gigantic documents is definitely an anti-pattern because it works against many of Mongo's features.
For instance, when retrieving documents, you can only retrieve a whole document out of a collection (not entirely true, but mostly). So if you have huge documents, you're retrieving huge documents each time. Also, having huge documents makes sharding less flexible since only the top level documents are indexed (and hence, sharded) in each collection. You can index values deep into a document, but the index value is associated with the top level document.
At the same time, going purely relational is also an anti-pattern because you've lost a lot of the referential integrity by going to Mongo in the first place. Also, all joins are done in application memory, so each one requires a full round-trip (slow).
So the answer is to do something in between. I'm thinking you'll probably want a collection for individuals and a different collection for businesses in this case. I say this because it seem like businesses have enough meta-data associated that it could bulk up a lot. (Also, I individual-business relationship seems like a many-to-many). However, an individual might have a Name object (with first and last properties). That would be a bad idea to make Name into a separate collection.
Some info from 10gen about schema design: http://www.mongodb.org/display/DOCS/Schema+Design
EDIT
Also, Mongo has limited support for transactions - in the form of atomic aggregates. When you insert an object into mongo, the entire object is either inserted or not inserted. So you're application domain requires consistency between certain objects, you probably want to keep them in the same document/collection.
For example, consider an application that requires that a User always has a Name object (containing FirstName, LastName, and MiddleInitial). If a User was somehow inserted with no corresponding Name, the data would be considered to be corrupted. In an RDBMS you would wrap a transaction around the operations to insert User and Name. In Mongo, we make sure Name is in the same document (aggregate) as User to achieve the same effect.
Your example is a little less clear, since I don't understand the business cases. One thing that does come to mind is that Mongo has excellent support for inheritance. It might make sense to put all users, individuals, and potentially businesses into the same collection (depending on how the application is modeled). If one individual has many contacts, you probably want individuals to have an array of IDs. If your application requires that you get a quick preview of contacts, you might consider duplicating part of an individual and storing an array of contact objects.
If you're used to RDBMS thinking, you probably think all your data always has to be consistent. The truth is, that's probably not entirely true. This concept of applying atomic aggregates to the domain has been preached heavily by the DDD community recently. When you look at your domain in depth, like your business users do, the consistency boundaries should become distinct.
MongoDB, and NoSQL in general, is about de-normalising data and about reducing joins. It goes against normal SQL thinking.
In your case, I don't see any reason why you would want to have separate collections because it introduces unnecessary complexity and performance overhead. Consider, for example, if you wanted to have a screen that displayed all contacts, in alphabetical order. If you have one single collection for contacts, then its really easy, but if you have two collections it becomes a more complicated proposition.
Where I would have multiple collections is if your application had multiple users storing contacts. I would then have one collection for each user. This makes it so easy to extract out that users contacts.