Generating a sine signal with time dependent frequency in Matlab - matlab

I want to generate a sine signal y(t) with a time dependent frequency f(t) in Matlab.
I've already tried to realise this using the sine function of Matlab:
h = 0.0001;
npoints = 150/h;
for i = 1:1:npoints
f(i) = 2 - 0.01*i*h;
y(i) = 0.5*sin(2*3.1415*f(i)*i*h)+0.5;
end
where the frequency is decreasing with time and h is the time step width.
My problem:
The signal y(t) doesn't look I expected it to look like. There appears a bump in the amplitude at a distinct time (have a look at the plot below).
Does anyone know why this happens and how to generate this sine signal correctly?

what about
y(i) = 0.5*real(exp(1i*2*pi*f(i)*i*h))+0.5;
You will get the plot below
If you just need a chirp signal starting from 2Hz down to 0.5Hz, the following should do the job
f_start = 2; % start frequency
f_end = 0.5; % end frequency
endtime = 150; % seconds
timestep = 0.0001;
times = timestep:timestep:endtime;
y = chirp(times,f_start,endtime,f_end);
and if you plot it you get
figure(2);plot(times,y);
You can achieve the same manually using below
f_start = 2; % start frequency
f_end = 0.5; % end frequency
timestep = 0.0001;
T = 150;
rate_of_change = (f_start - f_end)/T;
times = timestep:timestep:T;
y = sin(2*pi*(f_start*times - times.^2*rate_of_change/2));
It might be useful to read the following Wikipedia page on Chirp signal.

At 100 you have sin(2*pi*N), which is 0. Change f a little bit, say to 2.0123-... and it goes to the top.
As for the general probably unexpected shape, consider what function you are using in the end (= substitute f back in the formula). You see that you have something of the form y = ...sin(Ai-B*i^2)..., which has a minimum at 100.
The easiest solution here is to simply offset frequency a little more, and use something like f(i) = 3.1 - ..., which has a minimum outside of your considered range.

It looks like there isn't actually a "bump in frequency", but at the 100 value on the x-axis the entire signal is shifted by 180 degrees. Bear in mind that the amplitude still reaches 0 and does not become smaller (e.g. from 0.25 to 0.75)
This is because the i value becomes so high that the value of f(i) changes sign.
Another indicator of this is that the frequency starts to increase again after the shift instead of gradually becoming even lower.
Why do you start off with the value of 2 in f(i)?
Sorry for asking for clarification here, but I cannot post it as a comment.

Related

csc (cosecant) periodic equation and unexpected results

I can plot 1 (co-secant) every second over 2 seconds and it looks fine (the top plot). But when I plot the frequency of 100 csc (co-secant) signals I would expect / want 100 co-secant signals that are just repeating the same signal much like plotting y=.8*sin(100*t) would do but that doesn't occur what am I doing wrong? See code and plot below.
clear, clc
fs=8000
len_of_sig=2; %length of signal in seconds
t=linspace(0,2*pi*len_of_sig,fs*len_of_sig);
y_a=0.01*csc(1*t);
y_a(y_a >=1) = 1; %used to limit amplitude
y_a(y_a <=-1) = -1;
y_b=0.01*csc(100*t);
y_b(y_b >=1) = 1;
y_b(y_b <=-1) = -1;
t2=t./(2*pi); %converts time in radians to seconds
subplot(2,1,1);plot(t2(1:end),y_a(1:end));
subplot(2,1,2);plot(t2(1:end),y_b(1:end));
Ps: I'm using octave 4.0 which is like matlab
What you're seeing in the second subplot is the result of reduced sampling per cycle. You are increasing the frequency of y_b relative to y_a by a factor of 100, but still using the same vector of time points t, meaning you have 1/100th the number of points per cycle in y_b. These fewer points per cycle fall at slightly different offsets to the discontinuities, giving you the pattern above.
You can fix this by using an upsampled time vector for y_b:
t_up = linspace(0, 2*pi*len_of_sig, 100*fs*len_of_sig);
y_b = 0.01*csc(100*t_up);
y_b(y_b >= 1) = 1;
y_b(y_b <= -1) = -1;
subplot(2, 1, 2); plot(t_up./(2*pi), y_b);

period of sawtooth from measurements

I have a series of 2D measurements (time on x-axis) that plot to a non-smooth (but pretty good) sawtooth wave. In an ideal world the data points would form a perfect sawtooth wave (with partial amplitude data points at either end). Is there a way of calculating the (average) period of the wave, using OCTAVE/MATLAB? I tried using the formula for a sawtooth from Wikipedia (Sawtooth_wave):
P = mean(time.*pi./acot(tan(y./4))), -pi < y < +pi
also tried:
P = mean(abs(time.*pi./acot(tan(y./4))))
but it didn't work, or at least it gave me an answer I know is out.
An example of the plotted data:
I've also tried the following method - should work - but it's NOT giving me what I know is close to the right answer. Probably something simple and wrong with my code. What?
slopes = diff(y)./diff(x); % form vector of slopes for each two adjacent points
for n = 1:length(diff(y)) % delete slope of any two points that form the 'cliff'
if abs(diff(y(n,1))) > pi
slopes(n,:) = [];
end
end
P = median((2*pi)./slopes); % Amplitude is 2*pi
Old post, but thought I'd offer my two-cent's worth. I think there are two reasonable ways to do this:
Perform a Fourier transform and calculate the fundamental
Do a curve-fitting of the phase, period, amplitude, and offset to an ideal square-wave.
Given curve-fitting will likely be difficult because of discontinuities in saw-wave, so I'd recommend Fourier transform. Self-contained example below:
f_s = 10; # Sampling freq. in Hz
record_length = 1000; # length of recording in sec.
% Create noisy saw-tooth wave, with known period and phase
saw_period = 50;
saw_phase = 10;
t = (1/f_s):(1/f_s):record_length;
saw_function = #(t) mod((t-saw_phase)*(2*pi/saw_period), 2*pi) - pi;
noise_lvl = 2.0;
saw_wave = saw_function(t) + noise_lvl*randn(size(t));
num_tsteps = length(t);
% Plot time-series data
figure();
plot(t, saw_wave, '*r', t, saw_function(t));
xlabel('Time [s]');
ylabel('Measurement');
legend('measurements', 'ideal');
% Perform fast-Fourier transform (and plot it)
dft = fft(saw_wave);
freq = 0:(f_s/length(saw_wave)):(f_s/2);
dft = dft(1:(length(saw_wave)/2+1));
figure();
plot(freq, abs(dft));
xlabel('Freqency [Hz]');
ylabel('FFT of Measurement');
% Estimate fundamental frequency:
[~, idx] = max(abs(dft));
peak_f = abs(freq(idx));
peak_period = 1/peak_f;
disp(strcat('Estimated period [s]: ', num2str(peak_period)))
Which outputs a couple of graphs, and also the estimated period of the saw-tooth wave. You can play around with the amount of noise and see that it correctly gets a period of 50 seconds till very high levels of noise.
Estimated period [s]: 50

identifying phase shift between signals

I have generated three identical waves with a phase shift in each. For example:
t = 1:10800; % generate time vector
fs = 1; % sampling frequency (seconds)
A = 2; % amplitude
P = 1000; % period (seconds), the time it takes for the signal to repeat itself
f1 = 1/P; % number of cycles per second (i.e. how often the signal repeats itself every second).
y1 = A*sin(2*pi*f1*t); % signal 1
phi = 10; % phase shift
y2 = A*sin(2*pi*f1*t + phi); % signal 2
phi = 15; % phase shift
y3 = A*sin(2*pi*f1*t + phi); % signal 3
YY = [y1',y2',y3'];
plot(t,YY)
I would now like to use a method for detecting this phase shift between the waves. The point of doing this is so that I can eventually apply the method to real data and identify phase shifts between signals.
So far I have been thinking of computing the cross spectra between each wave and the first wave (i.e. without the phase shift):
for i = 1:3;
[Pxy,Freq] = cpsd(YY(:,1),YY(:,i));
coP = real(Pxy);
quadP = imag(Pxy);
phase(:,i) = atan2(coP,quadP);
end
but I'm not sure if this makes any sense.
Has anyone else done something similar to this? The desired outcome should show a phase shift at 10 and 15 for waves 2 and 3 respectively.
Any advice would be appreciated.
There are several ways that you can measure the phase shift between signals. Between your response, the comments below your response, and the other answers, you've gotten most of the options. The specific choice of technique is usually based on issues such as:
Noisy or Clean: Is there noise in your signal?
Multi-Component or Single-Component: Are there more than one type of signal within your recording (multiple tones at multiple frequencies moving in different directions)? Or, is there just a single signal, like in your sine-wave example?
Instantaneous or Averaged: Are you looking for the average phase lag across your entire recording, or are you looking to track how the phase changes throughout the recording?
Depending on your answer to these questions, you could consider the following techniques:
Cross-Correlation: Use the a command like [c,lag]=xcorr(y1,y2); to get the cross-correlation between the two signals. This works on the original time-domain signals. You look for the index where c is maximum ([maxC,I]=max(c);) and then you get your lag value in units of samples lag = lag(I);. This approach gives you the average phase lag for the entire recording. It requires that your signal of interest in the recording be stronger than anything else in your recording...in other words, it is sensitive to noise and other interference.
Frequency Domain: Here you convert your signals into the frequency domain (using fft or cpsd or whatever). Then, you'd find the bin that corresponds to the frequency that you care about and get the angle between the two signals. So, for example, if bin #18 corresponds to your signal's frequency, you'd get the phase lag in radians via phase_rad = angle(fft_y1(18)/fft_y2(18));. If your signals have a constant frequency, this is an excellent approach because it naturally rejects all noise and interference at other frequencies. You can have really strong interference at one frequency, but you can still cleanly get your signal at another frequency. This technique is not the best for signals that change frequency during the fft analysis window.
Hilbert Transform: A third technique, often overlooked, is to convert your time-domain signal into an analytic signal via the Hilbert transform: y1_h = hilbert(y1);. Once you do this, your signal is a vector of complex numbers. A vector holding a simple sine wave in the time domain will now be a vector of complex numbers whose magnitude is constant and whose phase is changing in sync with your original sine wave. This technique allows you to get the instantaneous phase lag between two signals...it's powerful: phase_rad = angle(y1_h ./ y2_h); or phase_rad = wrap(angle(y1_h) - angle(y2_h));. The major limitation to this approach is that your signal needs to be mono-component, meaning that your signal of interest must dominate your recording. Therefore, you may have to filter out any substantial interference that might exist.
For two sinusoidal signal the phase of the complex correlation coefficient gives you what you want. I can only give you an python example (using scipy) as I don't have a matlab to test it.
x1 = sin( 0.1*arange(1024) )
x2 = sin( 0.1*arange(1024) + 0.456)
x1h = hilbert(x1)
x2h = hilbert(x2)
c = inner( x1h, conj(x2h) ) / sqrt( inner(x1h,conj(x1h)) * inner(x2h,conj(x2h)) )
phase_diff = angle(c)
There is a function corrcoeff in matlab, that should work, too (The python one discard the imaginary part). I.e. c = corrcoeff(x1h,x2h) should work in matlab.
The Matlab code to find relative phase using cross-correlation:
fr = 20; % input signal freq
timeStep = 1e-4;
t = 0:timeStep:50; % time vector
y1 = sin(2*pi*t); % reference signal
ph = 0.5; % phase difference to be detected in radians
y2 = 0.9 * sin(2*pi*t + ph); % signal, the phase of which, is to be measured relative to the reference signal
[c,lag]=xcorr(y1,y2); % calc. cross-corel-n
[maxC,I]=max(c); % find max
PH = (lag(I) * timeStep) * 2 * pi; % calculated phase in radians
>> PH
PH =
0.4995
With the correct signals:
t = 1:10800; % generate time vector
fs = 1; % sampling frequency (seconds)
A = 2; % amplitude
P = 1000; % period (seconds), the time it takes for the signal to repeat itself
f1 = 1/P; % number of cycles per second (i.e. how often the signal repeats itself every second).
y1 = A*sin(2*pi*f1*t); % signal 1
phi = 10*pi/180; % phase shift in radians
y2 = A*sin(2*pi*f1*t + phi); % signal 2
phi = 15*pi/180; % phase shift in radians
y3 = A*sin(2*pi*f1*t + phi); % signal 3
The following should work:
>> acos(dot(y1,y2)/(norm(y1)*norm(y2)))
>> ans*180/pi
ans = 9.9332
>> acos(dot(y1,y3)/(norm(y1)*norm(y3)))
ans = 0.25980
>> ans*180/pi
ans = 14.885
Whether or not that's good enough for your "real" signals, only you can tell.
Here is the little modification of your code: phi = 10 is actually in degree, then in sine function, phase information is mostly expressed in radian,so you need to change deg2rad(phi) as following:
t = 1:10800; % generate time vector
fs = 1; % sampling frequency (seconds)
A = 2; % amplitude
P = 1000; % period (seconds), the time it takes for the signal to repeat itself
f1 = 1/P; % number of cycles per second (i.e. how often the signal repeats itself every second).
y1 = A*sin(2*pi*f1*t); % signal 1
phi = deg2rad(10); % phase shift
y2 = A*sin(2*pi*f1*t + phi); % signal 2
phi = deg2rad(15); % phase shift
y3 = A*sin(2*pi*f1*t + phi); % signal 3
YY = [y1',y2',y3'];
plot(t,YY)
then using frequency domain method as mentioned chipaudette
fft_y1 = fft(y1);
fft_y2 = fft(y2);
phase_rad = angle(fft_y1(1:end/2)/fft_y2(1:end/2));
phase_deg = rad2deg(angle(fft_y1(1:end/2)/fft_y2(1:end/2)));
now this will give you a phase shift estimate with error = +-0.2145
If you know the frequency and just want to find the phase, rather than use a full FFT, you might want to consider the Goertzel algorithm, which is a more efficient way to calculate the DFT for a single frequency (an FFT will calculate it for all frequencies).
For a good implementation, see: https://www.mathworks.com/matlabcentral/fileexchange/35103-generalized-goertzel-algorithm and https://asp-eurasipjournals.springeropen.com/track/pdf/10.1186/1687-6180-2012-56.pdf
If you use an AWGN signal with delay and apply your method it works, but if you are using a single tone frequency estimation will not help you. because there is no energy in any other frequency but the tone. You better use cross-correlation in the time domain for this - it will work better for a fixed delay. If you have a wideband signal you can use subbands domain and estimate the phase from that (it is better than FFT due to low cross-frequency dependencies).

How do I sync two or more waveforms in MATLAB?

I'll try to be more specific: I have several time histories of a signal which have pretty much all the same behaviour (sine waves) but all start at a different point in time. How do I automatically detect the initial time lag and delete it such that all sine waves start at the same instant in time?
If you have two signals, x and y, each being a n x 1 matrix where y is a shifted version of x:
[c,lags] = xcorr(x,y); % c is the correlation, should have a clear peak
s = lags(c==max(c)); % s is the shift you need
y2 = circshift(y,s); % y2 should now overlap x
(Demo purposes only - I don't suggest you circshift your actual data). The shift you are looking for in this case should ideally be relatively small compared to the length of x and y. A lot depends on the noise level and the nature of the offset.
The following works pretty well under low noise conditions and fast sampling and may do depending on your requirements for accuracy. It uses a simple threshold and thus is subject to inaccuracy when things get noisy. Adjust thresh to a low value above the noise.
Nwav = 3;
Np = 100;
tmax = 50;
A = 1000;
Nz = Np/5;
%%%%%%%%%%%%%%
thresh = A/50;
%%%%%%%%%%%%%%
% generate some waveforms
t = [0:tmax/(Np-1):tmax].';
w = rand(1,Nwav);
offs = round(rand(1,Nwav)*100);
sig = [A*sin(t(1:end-Nz)*w) ; zeros(Nz,Nwav)] + randn(Np,Nwav);
for ii=1:Nwav
sig(:,ii) = circshift(sig(:,ii),round(rand()*Nz));
end
figure, plot(t,sig)
hold on, plot(t,repmat(thresh,length(t),1),'k--')
% use the threshold and align the waveforms
for ii=1:Nwav
[ir ic] = find(sig(:,ii)>thresh,1)
sig(:,ii) = circshift(sig(:,ii),-ir+1);
end
figure, plot(t,sig)
hold on, plot(t,repmat(thresh,length(t),1),'k--')
There is room for improvement (noise filtering, slope detection) but this should get you started.
I also recommend you look into waveform processing toolboxes, in matlab central for instance.

MATLAB FFT xaxis limits messing up and fftshift

This is the first time I'm using the fft function and I'm trying to plot the frequency spectrum of a simple cosine function:
f = cos(2*pi*300*t)
The sampling rate is 220500. I'm plotting one second of the function f.
Here is my attempt:
time = 1;
freq = 220500;
t = 0 : 1/freq : 1 - 1/freq;
N = length(t);
df = freq/(N*time);
F = fftshift(fft(cos(2*pi*300*t))/N);
faxis = -N/2 / time : df : (N/2-1) / time;
plot(faxis, real(F));
grid on;
xlim([-500, 500]);
Why do I get odd results when I increase the frequency to 900Hz? These odd results can be fixed by increasing the x-axis limits from, say, 500Hz to 1000Hz. Also, is this the correct approach? I noticed many other people didn't use fftshift(X) (but I think they only did a single sided spectrum analysis).
Thank you.
Here is my response as promised.
The first or your questions related to why you "get odd results when you increase the frequency to 900 Hz" is related to the Matlab's plot rescaling functionality as described by #Castilho. When you change the range of the x-axis, Matlab will try to be helpful and rescale the y-axis. If the peaks lie outside of your specified range, matlab will zoom in on the small numerical errors generated in the process. You can remedy this with the 'ylim' command if it bothers you.
However, your second, more open question "is this the correct approach?" requires a deeper discussion. Allow me to tell you how I would go about making a more flexible solution to achieve your goal of plotting a cosine wave.
You begin with the following:
time = 1;
freq = 220500;
This raises an alarm in my head immediately. Looking at the rest of the post, you appear to be interested in frequencies in the sub-kHz range. If that is the case, then this sampling rate is excessive as the Nyquist limit (sr/2) for this rate is above 100 kHz. I'm guessing you meant to use the common audio sampling rate of 22050 Hz (but I could be wrong here)?
Either way, your analysis works out numerically OK in the end. However, you are not helping yourself to understand how the FFT can be used most effectively for analysis in real-world situations.
Allow me to post how I would do this. The following script does almost exactly what your script does, but opens some potential on which we can build . .
%// These are the user parameters
durT = 1;
fs = 22050;
NFFT = durT*fs;
sigFreq = 300;
%//Calculate time axis
dt = 1/fs;
tAxis = 0:dt:(durT-dt);
%//Calculate frequency axis
df = fs/NFFT;
fAxis = 0:df:(fs-df);
%//Calculate time domain signal and convert to frequency domain
x = cos( 2*pi*sigFreq*tAxis );
F = abs( fft(x, NFFT) / NFFT );
subplot(2,1,1);
plot( fAxis, 2*F )
xlim([0 2*sigFreq])
title('single sided spectrum')
subplot(2,1,2);
plot( fAxis-fs/2, fftshift(F) )
xlim([-2*sigFreq 2*sigFreq])
title('whole fft-shifted spectrum')
You calculate a time axis and calculate your number of FFT points from the length of the time axis. This is very odd. The problem with this approach, is that the frequency resolution of the fft changes as you change the duration of your input signal, because N is dependent on your "time" variable. The matlab fft command will use an FFT size that matches the size of the input signal.
In my example, I calculate the frequency axis directly from the NFFT. This is somewhat irrelevant in the context of the above example, as I set the NFFT to equal the number of samples in the signal. However, using this format helps to demystify your thinking and it becomes very important in my next example.
** SIDE NOTE: You use real(F) in your example. Unless you have a very good reason to only be extracting the real part of the FFT result, then it is much more common to extract the magnitude of the FFT using abs(F). This is the equivalent of sqrt(real(F).^2 + imag(F).^2).**
Most of the time you will want to use a shorter NFFT. This might be because you are perhaps running the analysis in a real time system, or because you want to average the result of many FFTs together to get an idea of the average spectrum for a time varying signal, or because you want to compare spectra of signals that have different duration without wasting information. Just using the fft command with a value of NFFT < the number of elements in your signal will result in an fft calculated from the last NFFT points of the signal. This is a bit wasteful.
The following example is much more relevant to useful application. It shows how you would split a signal into blocks and then process each block and average the result:
%//These are the user parameters
durT = 1;
fs = 22050;
NFFT = 2048;
sigFreq = 300;
%//Calculate time axis
dt = 1/fs;
tAxis = dt:dt:(durT-dt);
%//Calculate frequency axis
df = fs/NFFT;
fAxis = 0:df:(fs-df);
%//Calculate time domain signal
x = cos( 2*pi*sigFreq*tAxis );
%//Buffer it and window
win = hamming(NFFT);%//chose window type based on your application
x = buffer(x, NFFT, NFFT/2); %// 50% overlap between frames in this instance
x = x(:, 2:end-1); %//optional step to remove zero padded frames
x = ( x' * diag(win) )'; %//efficiently window each frame using matrix algebra
%// Calculate mean FFT
F = abs( fft(x, NFFT) / sum(win) );
F = mean(F,2);
subplot(2,1,1);
plot( fAxis, 2*F )
xlim([0 2*sigFreq])
title('single sided spectrum')
subplot(2,1,2);
plot( fAxis-fs/2, fftshift(F) )
xlim([-2*sigFreq 2*sigFreq])
title('whole fft-shifted spectrum')
I use a hamming window in the above example. The window that you choose should suit the application http://en.wikipedia.org/wiki/Window_function
The overlap amount that you choose will depend somewhat on the type of window you use. In the above example, the Hamming window weights the samples in each buffer towards zero away from the centre of each frame. In order to use all of the information in the input signal, it is important to use some overlap. However, if you just use a plain rectangular window, the overlap becomes pointless as all samples are weighted equally. The more overlap you use, the more processing is required to calculate the mean spectrum.
Hope this helps your understanding.
Your result is perfectly right. Your frequency axis calculation is also right. The problem lies on the y axis scale. When you use the function xlims, matlab automatically recalculates the y scale so that you can see "meaningful" data. When the cosine peaks lie outside the limit you chose (when f>500Hz), there are no peaks to show, so the scale is calculated based on some veeeery small noise (here at my computer, with matlab 2011a, the y scale was 10-16).
Changing the limit is indeed the correct approach, because if you don't change it you can't see the peaks on the frequency spectrum.
One thing I noticed, however. Is there a reason for you to plot the real part of the transform? Usually, it is abs(F) that gets plotted, and not the real part.
edit: Actually, you're frequency axis is only right because df, in this case, is 1. The faxis line is right, but the df calculation isn't.
The FFT calculates N points from -Fs/2 to Fs/2. So N points over a range of Fs yields a df of Fs/N. As N/time = Fs => time = N/Fs. Substituting that on the expression of df you used: your_df = Fs/N*(N/Fs) = (Fs/N)^2. As Fs/N = 1, the final result was right :P