I need to union two dataframes and combine the columns by keys. The two datafrmaes have the same schema, for example:
root
|-- id: String (nullable = true)
|-- cMap: map (nullable = true)
| |-- key: string
| |-- value: string (valueContainsNull = true)
I want to group by "id" and aggregate the "cMap" together to deduplicate.
I tried the code:
val df = df_a.unionAll(df_b).groupBy("id").agg(collect_list("cMap") as "cMap").
rdd.map(x => {
var map = Map[String,String]()
x.getAs[Seq[Map[String,String]]]("cMap").foreach( y =>
y.foreach( tuple =>
{
val key = tuple._1
val value = tuple._2
if(!map.contains(key))//deduplicate
map += (key -> value)
}))
Row(x.getAs[String]("id"),map)
})
But it seems collect_list cannnot be used to map structure:
org.apache.spark.sql.AnalysisException: No handler for Hive udf class org.apache.hadoop.hive.ql.udf.generic.GenericUDAFCollectList because: Only primitive type arguments are accepted but map<string,string> was passed as parameter 1..;
Is there other solution for the problem?
You have to use explode function on the map columns first to destructure maps into key and value columns, union the result datasets followed by distinct to de-duplicate and only then groupBy with some custom Scala coding to aggregate the maps.
Stop talking and let's do some coding then...
Given the datasets:
scala> a.show(false)
+---+-----------------------+
|id |cMap |
+---+-----------------------+
|one|Map(1 -> one, 2 -> two)|
+---+-----------------------+
scala> a.printSchema
root
|-- id: string (nullable = true)
|-- cMap: map (nullable = true)
| |-- key: string
| |-- value: string (valueContainsNull = true)
scala> b.show(false)
+---+-------------+
|id |cMap |
+---+-------------+
|one|Map(1 -> one)|
+---+-------------+
scala> b.printSchema
root
|-- id: string (nullable = true)
|-- cMap: map (nullable = true)
| |-- key: string
| |-- value: string (valueContainsNull = true)
You should first use explode function on the map columns.
explode(e: Column): Column Creates a new row for each element in the given array or map column.
val a_keyValues = a.select('*, explode($"cMap"))
scala> a_keyValues.show(false)
+---+-----------------------+---+-----+
|id |cMap |key|value|
+---+-----------------------+---+-----+
|one|Map(1 -> one, 2 -> two)|1 |one |
|one|Map(1 -> one, 2 -> two)|2 |two |
+---+-----------------------+---+-----+
val b_keyValues = b.select('*, explode($"cMap"))
With the following you have distinct key-value pairs which is exactly deduplication you asked for.
val distinctKeyValues = a_keyValues.
union(b_keyValues).
select("id", "key", "value").
distinct // <-- deduplicate
scala> distinctKeyValues.show(false)
+---+---+-----+
|id |key|value|
+---+---+-----+
|one|1 |one |
|one|2 |two |
+---+---+-----+
Time for groupBy and create the final map column.
val result = distinctKeyValues.
withColumn("map", map($"key", $"value")).
groupBy("id").
agg(collect_list("map")).
as[(String, Seq[Map[String, String]])]. // <-- leave Rows for typed pairs
map { case (id, list) => (id, list.reduce(_ ++ _)) }. // <-- collect all entries under one map
toDF("id", "cMap") // <-- give the columns their names
scala> result.show(truncate = false)
+---+-----------------------+
|id |cMap |
+---+-----------------------+
|one|Map(1 -> one, 2 -> two)|
+---+-----------------------+
Please note that as of Spark 2.0.0 unionAll has been deprecated and union is the proper union operator:
(Since version 2.0.0) use union()
Since Spark 3.0, you can:
transform your map to an array of map entries with map_entries
collect those arrays by your id using collect_set
flatten the collected array of arrays using flatten
then rebuild the map from flattened array using map_from_entries
See following code snippet where input is your input dataframe:
import org.apache.spark.sql.functions.{col, collect_set, flatten, map_entries, map_from_entries}
input
.withColumn("cMap", map_entries(col("cMap")))
.groupBy("id")
.agg(map_from_entries(flatten(collect_set("cMap"))).as("cMap"))
Example
Given the following dataframe input:
+---+--------------------+
|id |cMap |
+---+--------------------+
|1 |[k1 -> v1] |
|1 |[k2 -> v2, k3 -> v3]|
|2 |[k4 -> v4] |
|2 |[] |
|3 |[k6 -> v6, k7 -> v7]|
+---+--------------------+
The code snippet above returns the following dataframe:
+---+------------------------------+
|id |cMap |
+---+------------------------------+
|1 |[k1 -> v1, k2 -> v2, k3 -> v3]|
|3 |[k6 -> v6, k7 -> v7] |
|2 |[k4 -> v4] |
+---+------------------------------+
I agree with #Shankar. Your codes seems to be flawless.
The only mistake I assume you are doing is that you are importing wrong library.
You had to import
import org.apache.spark.sql.functions.collect_list
But I guess you are importing
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFCollectList
I hope I am guessing it right.
Related
I am writing a spark scala code to write the output to BQ, The following are the codes used for forming the output table which has two columns (id and keywords)
val df1 = Seq("tamil", "telugu", "hindi").toDF("language")
val df2 = Seq(
(101, Seq("tamildiary", "tamilkeyboard", "telugumovie")),
(102, Seq("tamilmovie")),
(103, Seq("hindirhymes", "hindimovie"))
).toDF("id", "keywords")
val pattern = concat(lit("^"), df1("language"), lit(".*"))
import org.apache.spark.sql.Row
val arrayToMap = udf{ (arr: Seq[Row]) =>
arr.map{ case Row(k: String, v: Int) => (k, v) }.toMap
}
val final_df = df2.
withColumn("keyword", explode($"keywords")).as("df2").
join(df1.as("df1"), regexp_replace($"df2.keyword", pattern, lit("")) =!= $"df2.keyword").
groupBy("id", "language").agg(size(collect_list($"language")).as("count")).
groupBy("id").agg(arrayToMap(collect_list(struct($"language", $"count"))).as("keywords"))
The output of final_df is:
+---+--------------------+
| id| app_language|
+---+--------------------+
|101|Map(tamil -> 2, t...|
|103| Map(hindi -> 2)|
|102| Map(tamil -> 1)|
+---+--------------------+
I am defining the below function to pass the schema for this output table. (Since BQ doesn't support map field, I am using array of struct. But this is also not working)
def createTableIfNotExists(outputTable: String) = {
spark.createBigQueryTable(
s"""
|CREATE TABLE IF NOT EXISTS $outputTable(
|ds date,
|id int64,
|keywords ARRAY<STRUCT<key STRING, value INT64>>
|)
|PARTITION BY ds
|CLUSTER BY user_id
""".stripMargin)
}
Could anyone please help me in writing a correct schema for this so that it's compatible in BQ.
You can collect an array of struct as below:
val final_df = df2
.withColumn("keyword", explode($"keywords")).as("df2")
.join(df1.as("df1"), regexp_replace($"df2.keyword", pattern, lit("")) =!= $"df2.keyword")
.groupBy("id", "language")
.agg(size(collect_list($"language")).as("count"))
.groupBy("id")
.agg(collect_list(struct($"language", $"count")).as("app_language"))
final_df.show(false)
+---+-------------------------+
|id |app_language |
+---+-------------------------+
|101|[[tamil, 2], [telugu, 1]]|
|103|[[hindi, 2]] |
|102|[[tamil, 1]] |
+---+-------------------------+
final_df.printSchema
root
|-- id: integer (nullable = false)
|-- app_language: array (nullable = true)
| |-- element: struct (containsNull = false)
| | |-- language: string (nullable = true)
| | |-- count: integer (nullable = false)
And then you can have a schema like
def createTableIfNotExists(outputTable: String) = {
spark.createBigQueryTable(
s"""
|CREATE TABLE IF NOT EXISTS $outputTable(
|ds date,
|id int64,
|keywords ARRAY<STRUCT<language STRING, count INT64>>
|)
|PARTITION BY ds
|CLUSTER BY user_id
""".stripMargin)
}
I have a csv file like this:
weight,animal_type,animal_interpretation
20,dog,"{is_large_animal=true, is_mammal=true}"
3.5,cat,"{is_large_animal=false, is_mammal=true}"
6.00E-04,ant,"{is_large_animal=false, is_mammal=false}"
And I created case class schema with the following:
package types
case class AnimalsType (
weight: Option[Double],
animal_type: Option[String],
animal_interpretation: Option[AnimalInterpretation]
)
case class AnimalInterpretation (
is_large_animal: Option[Boolean],
is_mammal: Option[Boolean]
)
I tried to load the csv into a dataframe with:
var df = spark.read.format("csv").option("header", "true").load("src/main/resources/animals.csv").as[AnimalsType]
But got the following exception:
Exception in thread "main" org.apache.spark.sql.AnalysisException: Can't extract value from animal_interpretation#12: need struct type but got string;
Am I doing something wrong? What would be the proper way of doing this?
You can not assigned schema to csv json directly. You need to do transform csv String column (animal_interpretation) into Json format, As I have done in below code using UDF. if you can get input data in format like df1 then there is no need of below UDF you can continue from df1 and get final dataframe df2.
There is no need of any case class since your data header contain column and for json data you need to declare schema AnimalInterpretationSch as below
scala> import org.apache.spark.sql.types._
scala> import org.apache.spark.sql.expressions.UserDefinedFunction
//Input CSV DataFrame
scala> df.show(false)
+--------+-----------+---------------------------------------+
|weight |animal_type|animal_interpretation |
+--------+-----------+---------------------------------------+
|20 |dog |{is_large_animal=true, is_mammal=true} |
|3.5 |cat |{is_large_animal=false, is_mammal=true}|
|6.00E-04|ant |{is_large_animal=false,is_mammal=false}|
+--------+-----------+---------------------------------------+
//UDF to convert "animal_interpretation" column to Json Format
scala> def StringToJson:UserDefinedFunction = udf((data:String,JsonColumn:String) => {
| var out = data
| val JsonColList = JsonColumn.trim.split(",").toList
| JsonColList.foreach{ rr =>
| out = out.replaceAll(rr, "'"+rr+"'")
| }
| out = out.replaceAll("=", ":")
| out
| })
//All column from Json
scala> val JsonCol = "is_large_animal,is_mammal"
//New dataframe with Json format
scala> val df1 = df.withColumn("animal_interpretation", StringToJson(col("animal_interpretation"), lit(JsonCol)))
scala> df1.show(false)
+--------+-----------+-------------------------------------------+
|weight |animal_type|animal_interpretation |
+--------+-----------+-------------------------------------------+
|20 |dog |{'is_large_animal':true, 'is_mammal':true} |
|3.5 |cat |{'is_large_animal':false, 'is_mammal':true}|
|6.00E-04|ant |{'is_large_animal':false,'is_mammal':false}|
+--------+-----------+-------------------------------------------+
//Schema declarion of Json format
scala> val AnimalInterpretationSch = new StructType().add("is_large_animal", BooleanType).add("is_mammal", BooleanType)
//Accessing Json columns
scala> val df2 = df1.select(col("weight"), col("animal_type"),from_json(col("animal_interpretation"), AnimalInterpretationSch).as("jsondata")).select("weight", "animal_type", "jsondata.*")
scala> df2.printSchema
root
|-- weight: string (nullable = true)
|-- animal_type: string (nullable = true)
|-- is_large_animal: boolean (nullable = true)
|-- is_mammal: boolean (nullable = true)
scala> df2.show()
+--------+-----------+---------------+---------+
| weight|animal_type|is_large_animal|is_mammal|
+--------+-----------+---------------+---------+
| 20| dog| true| true|
| 3.5| cat| false| true|
|6.00E-04| ant| false| false|
+--------+-----------+---------------+---------+
I want to convert an array of String in a dataframe to a String with different delimiters than a comma also removing the array bracket. I want the "," to be replaced with ";#". This is to avoid elements that may have "," inside as it is a freeform text field. I am using spark 1.6.
Examples below:
Schema:
root
|-- carLineName: array (nullable = true)
| |-- element: string (containsNull = true)
Input as Dataframe:
+--------------------+
|carLineName |
+--------------------+
|[Avalon,CRV,Camry] |
|[Model T, Model S] |
|[Cayenne, Mustang] |
|[Pilot, Jeep] |
Desired output:
+--------------------+
|carLineName |
+--------------------+
|Avalon;#CRV;#Camry |
|Model T;#Model S |
|Cayenne;#Mustang |
|Pilot;# Jeep |
Current code which produces the input above:
val newCarDf = carDf.select(col("carLineName").cast("String").as("carLineName"))
You can use native function array_join (it is available since Spark 2.4):
import org.apache.spark.sql.functions.{array_join}
val l = Seq(Seq("Avalon","CRV","Camry"), Seq("Model T", "Model S"), Seq("Cayenne", "Mustang"), Seq("Pilot", "Jeep"))
val df = l.toDF("carLineName")
df.withColumn("str", array_join($"carLineName", ";#")).show()
+--------------------+------------------+
| carLineName| str|
+--------------------+------------------+
|[Avalon, CRV, Camry]|Avalon;#CRV;#Camry|
| [Model T, Model S]| Model T;#Model S|
| [Cayenne, Mustang]| Cayenne;#Mustang|
| [Pilot, Jeep]| Pilot;#Jeep|
+--------------------+------------------+
you can create a user defined function that concatenate elements with "#;" separator as the following example:
val df1 = Seq(
("1", Array("t1", "t2")),
("2", Array("t1", "t3", "t5"))
).toDF("id", "arr")
import org.apache.spark.sql.functions.{col, udf}
def formatString: Seq[String] => String = x => x.reduce(_ ++ "#;" ++ _)
def udfFormat = udf(formatString)
df1.withColumn("formatedColumn", udfFormat(col("arr")))
+---+------------+----------+
| id| arr| formated|
+---+------------+----------+
| 1| [t1, t2]| t1#;t2|
| 2|[t1, t3, t5]|t1#;t3#;t5|
+---+------------+----------+
You could simply write an User-defined function udf, which will take an Array of String as input parameter. Inside udf any operation could be performed on an array.
import org.apache.spark.sql.expressions.UserDefinedFunction
import org.apache.spark.sql.functions.udf
def toCustomString: UserDefinedFunction = udf((carLineName: Seq[String]) => {
carLineName.mkString(";#")
})
val newCarDf = df.withColumn("carLineName", toCustomString(df.col("carLineName")))
This udf could be made generic further by passing the delimiter as the second parameter.
import org.apache.spark.sql.functions.lit
def toCustomStringWithDelimiter: UserDefinedFunction = udf((carLineName: Seq[String], delimiter: String) => {
carLineName.mkString(delimiter)
})
val newCarDf = df.withColumn("carLineName", toCustomStringWithDelimiter(df.col("carLineName"), lit(";#")))
Since you are using 1.6, we can do simple map of Row to WrappedArray.
Here is how it goes.
Input :
scala> val carLineDf = Seq( (Array("Avalon","CRV","Camry")),
| (Array("Model T", "Model S")),
| (Array("Cayenne", "Mustang")),
| (Array("Pilot", "Jeep"))
| ).toDF("carLineName")
carLineDf: org.apache.spark.sql.DataFrame = [carLineName: array<string>]
Schema ::
scala> carLineDf.printSchema
root
|-- carLineName: array (nullable = true)
| |-- element: string (containsNull = true)
Then we just use Row.getAs to get an WrappedArray of String instead of a Row object and we can manipulate with usual scala built-ins :
scala> import scala.collection.mutable.WrappedArray
import scala.collection.mutable.WrappedArray
scala> carLineDf.map( row => row.getAs[WrappedArray[String]](0)).map( a => a.mkString(";#")).toDF("carLineNameAsString").show(false)
+-------------------+
|carLineNameAsString|
+-------------------+
|Avalon;#CRV;#Camry |
|Model T;#Model S |
|Cayenne;#Mustang |
|Pilot;#Jeep |
+-------------------+
// Even an easier alternative
carLineDf.map( row => row.getAs[WrappedArray[String]](0)).map( r => r.reduce(_+";#"+_)).show(false)
That's it. You might have to use a dataframe.rdd otherwise this should do.
I have a DataFrame formated as below:
+---+------------------------------------------------------+
|Id |DateInfos |
+---+------------------------------------------------------+
|B |[[3, 19/06/2012-02.42.01], [4, 17/06/2012-18.22.21]] |
|A |[[1, 15/06/2012-18.22.16], [2, 15/06/2012-09.22.35]] |
|C |[[5, 14/06/2012-05.20.01]] |
+---+------------------------------------------------------+
I would like to sort each element of DateInfos column by date with the timestamp in the second element of my Array
+---+------------------------------------------------------+
|Id |DateInfos |
+---+------------------------------------------------------+
|B |[[4, 17/06/2012-18.22.21], [3, 19/06/2012-02.42.01]] |
|A |[[2, 15/06/2012-09.22.35], [1, 15/06/2012-18.22.16]] |
|C |[[5, 14/06/2012-05.20.01]] |
+---+------------------------------------------------------+
the schema of my DataFrame is printed as below:
root
|-- C1: string (nullable = true)
|-- C2: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- _1: integer (nullable = false)
| | |-- _2: string (nullable = false)
I assume I have to create an udf which use a function with the following signature:
def sort_by_date(mouvements : Array[Any]) : Array[Any]
Do you have any idea?
That's indeed a bit tricky - because although the UDF's input and output types seem identical, we can't really define it that way - because the input is actually a mutable.WrappedArray[Row] and the output can't use Row or else Spark will fail to decode it into a Row...
So we define a UDF that takes a mutable.WrappedArray[Row] and returns an Array[(Int, String)]:
val sortDates = udf { arr: mutable.WrappedArray[Row] =>
arr.map { case Row(i: Int, s: String) => (i, s) }.sortBy(_._2)
}
val result = input.select($"Id", sortDates($"DateInfos") as "DateInfos")
result.show(truncate = false)
// +---+--------------------------------------------------+
// |Id |DateInfos |
// +---+--------------------------------------------------+
// |B |[[4,17/06/2012-18.22.21], [3,19/06/2012-02.42.01]]|
// |A |[[2,15/06/2012-09.22.35], [1,15/06/2012-18.22.16]]|
// |C |[[5,14/06/2012-05.20.01]] |
// +---+--------------------------------------------------+
I've a column in a Hive table:
Column Name: Filters
Data Type:
|-- filters: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- name: string (nullable = true)
| | |-- value: string (nullable = true)
I want to get the value from this column by it's corresponding name.
What I did so far:
val sdf: DataFrame = sqlContext.sql("select * from <tablename> where id='12345'")
val sdfFilters = sdf.select("filters").rdd.map(r => r(0).asInstanceOf[Seq[(String,String)]]).collect()
Output: sdfFilters: Array[Seq[(String, String)]] = Array(WrappedArray([filter_RISKFACTOR,OIS.SPD.*], [filter_AGGCODE,IR]), WrappedArray([filter_AGGCODE,IR_]))
Note: Casting to Seq because WrappedArray to Map conversion is not possible.
What to do next?
I want to get the value from this column by it's corresponding name.
If you want simple and reliable way to get all values by name, you may flatten your table using explode and filter:
case class Data(name: String, value: String)
case class Filters(filters: Array[Data])
val df = sqlContext.createDataFrame(Seq(Filters(Array(Data("a", "b"), Data("a", "c"))), Filters(Array(Data("b", "c")))))
df.show()
+--------------+
| filters|
+--------------+
|[[a,b], [a,c]]|
| [[b,c]]|
+--------------+
df.withColumn("filter", explode($"filters"))
.select($"filter.name" as "name", $"filter.value" as "value")
.where($"name" === "a")
.show()
+----+-----+
|name|value|
+----+-----+
| a| b|
| a| c|
+----+-----+
You can also collect your data any way you want:
val flatDf = df.withColumn("filter", explode($"filters")).select($"filter.name" as "name", $"filter.value" as "value")
flatDf.rdd.map(r => Array(r(0), r(1))).collect()
res0: Array[Array[Any]] = Array(Array(a, b), Array(a, c), Array(b, c))
flatDf.rdd.map(r => r(0) -> r(1)).groupByKey().collect() //not the best idea, if you have many values per key
res1: Array[(Any, Iterable[Any])] = Array((b,CompactBuffer(c)), (a,CompactBuffer(b, c)))
If you want to cast array[struct] to map[string, string] for future saving to some storage - it's different story, and this case is better solved by UDF. Anyway, you have to avoid collect() as long as it possible to keep your code scalable.