Data transmission Pi/MCP3008 - raspberry-pi

I have a question regarding data transmisison from a Raspberry Pi to a mcp3008. It is just a theoretical one. When they exchange the bytes does the master send 1 byte and receives 1 byte. Then sends the 2nd byte and receives 2nd byte.. OR does the master send 3 bytes and receives 3 bytes after that. From my understanding it is the first one, am I right?

Adafruit's library for the MCP3008 has your answer. Check out the read_adc() function:
def read_adc(self, adc_number):
"""Read the current value of the specified ADC channel (0-7). The values
can range from 0 to 1023 (10-bits).
"""
assert 0 <= adc_number <= 7, 'ADC number must be a value of 0-7!'
# Build a single channel read command.
# For example channel zero = 0b11000000
command = 0b11 << 6 # Start bit, single channel read
command |= (adc_number & 0x07) << 3 # Channel number (in 3 bits)
# Note the bottom 3 bits of command are 0, this is to account for the
# extra clock to do the conversion, and the low null bit returned at
# the start of the response.
resp = self._spi.transfer([command, 0x0, 0x0])
# Parse out the 10 bits of response data and return it.
result = (resp[0] & 0x01) << 9
result |= (resp[1] & 0xFF) << 1
result |= (resp[2] & 0x80) >> 7
return result & 0x3FF
It appears that it sends a three-byte command (where only one byte is non-zero):
resp = self._spi.transfer([command, 0x0, 0x0])
The response is three bytes which contains the packed 10-bit ADC value.
resp = self._spi.transfer([command, 0x0, 0x0])
# Parse out the 10 bits of response data and return it.
result = (resp[0] & 0x01) << 9
result |= (resp[1] & 0xFF) << 1
result |= (resp[2] & 0x80) >> 7

Related

Interfacing TFT screen with STM32F446 using display bus interface

I'm trying to understand how to interface a TFT screen module with an STM32F4 chip on a custom PCB.
Here is the module and its basic info.
To write commands and data to the screen, the ILI9481 driver on the screen module uses the Display Bus Interface (DBI), where data is sent over 8 or 16 bits through data wires.
Looking at library examples, I understand (and please correct me, if I am wrong), that in order to send a command of one byte, it simply sets the digital pins of the chip high or low, depending on the command. For example, command 0x2 in 8bit communication would be 00000010, where 0 would be the digital low on the chips GPIO pin and 1 would be digital high, meaning 1 of 8 wires are active (logical high). I Hope, I understand this correctly.
Now as I looked over examples, usually these digital pins are on the same GPIO port. And if I understand correctly, GPIO ports have a register, called BSRR, where you can manipulate the logical levels of the pins of the GPIO port. If the data pins are all on the same GPIO port, I assume this would work (from the example, where c is the command byte):
void STM32_TFT_8bit::write8(uint8_t c) {
// BRR or BSRR avoid read, mask write cycle time
// BSRR is 32 bits wide. 1's in the most significant 16 bits signify pins to reset (clear)
// 1's in least significant 16 bits signify pins to set high. 0's mean 'do nothing'
TFT_DATA->regs->BSRR = ((~c)<<16) | (c); //Set pins to the 8 bit number
WR_STROBE;
}
However, on my PCB board, the data pins of the screen module are separated on different ports.
So, my question is, how would I do the same thing, send a command while manipulating the logical levels? I assume, that I could write set/reset my pins one by one, depending on the command, but how would it look with the BSRR registers?
If my data pins are as follows:
D0 -> PC12
D1 -> PC11
D2 -> PC10
D4 -> PA12
D5 -> PA11
D6 -> PA10
D7 -> PA9
Would a command of 0x9D (0b10011101) through the registers would look something like this? :
GPIOA->regs->BSRR = 0b0001101000000000; // A port: turn on PA9, PA11, PA12
GPIOC->regs->BSRR = 0b0001010000000000; // C port: turn on PC10 and PC12
how would it look with the BSRR registers?
A bitmask can be applied to the value that is written to the BSRR, for example like this:
/* set/reset selected GPIO output pins, ignore the rest */
static inline void _gpio_write(GPIO_TypeDef* GPIOx, uint16_t state, uint16_t mask)
{
GPIOx->BSRR = ((uint32_t)(~state & mask) << 16) | (state & mask);
}
The data bits need to be rearranged before writing them to the GPIO output registers, for example like this:
#define BITS(w,b) (((w) & (1 << (b))) >> (b))
/* write a data/command byte to the data bus DB[7:0] of custom ILI9481 board
used pin assignment: D0 -> PC12, D1 -> PC11, D2 -> PC10, (D3 -> PC1) (?)
D4 -> PA12, D5 -> PA11, D6 -> PA10, D7 -> PA9 */
static void _write_data_to_pins(uint8_t data)
{
const uint16_t mask_c = 1<<12 | 1<<11 | 1<<10 | 1<<1; /* 0x1c02 */
const uint16_t mask_a = 1<<12 | 1<<11 | 1<<10 | 1<<9; /* 0x1e00 */
_gpio_write(GPIOC, (uint16_t)(BITS(data, 0) << 12 | BITS(data, 1) << 11 |
BITS(data, 2) << 10 | BITS(data, 3) << 1), mask_c);
_gpio_write(GPIOA, (uint16_t)(BITS(data, 4) << 12 | BITS(data, 5) << 11 |
BITS(data, 6) << 10 | BITS(data, 7) << 9), mask_a);
}
Test:
/* just for testing: read the written data bits back and arrange them in a byte */
static uint8_t _read_data_from_pins(void)
{
const uint32_t reg_c = GPIOC->ODR;
const uint32_t reg_a = GPIOA->ODR;
return (uint8_t)(BITS(reg_c, 12) << 0 | BITS(reg_c, 11) << 1 |
BITS(reg_c, 10) << 2 | BITS(reg_c, 1) << 3 |
BITS(reg_a, 12) << 4 | BITS(reg_a, 11) << 5 |
BITS(reg_a, 10) << 6 | BITS(reg_a, 9) << 7);
}
/* somewhere in main loop of test project */
{
uint8_t d = 0xff;
do {
_write_data_to_pins(d);
if (d != _read_data_from_pins()) {
Error_Handler();
}
} while (d--);
}
(Note: Only 7 of the 8 data pins DB[7:0] were listed in the question, PC1 was assigned to data pin D3 here.)
(Note: Most of these bit-shifts can be easily optimized out by the compiler, use at least -O1 to get somewhat compact results with GCC.)
GPIOA->regs->BSRR = 0b0001101000000000; // A port: turn on PA9, PA11, PA12
GPIOC->regs->BSRR = 0b0001010000000000; // C port: turn on PC10 and PC12
These two code lines do what is stated in the comments. But they will leave all the other pins unchanged.
The resulting output will depend on the previous state of the output data register. - For the LOW data pins, the corresponding GPIO port bits in BSRR[31:16] need to be set to 1 in order to update all the 8-bit data bus lines at once.
To answer the actual question:
No, the output on the data bus will not be 0x9D (0b1001'1101) after writing the two quoted bit patterns to the two BSRR registers. - In my case, it would look like this (please correct me if I'm wrong):
/* write 0x9D (0b1001'1101) to the data bus
used pin assignment: D0 -> PC12, D1 -> PC11, D2 -> PC10, (D3 -> PC1) (?)
D4 -> PA12, D5 -> PA11, D6 -> PA10, D7 -> PA9 */
GPIOC->BSRR = 0x8001402; /* = 0b00001000'00000000'00010100'00000010 */
GPIOA->BSRR = 0xc001200; /* = 0b00001100'00000000'00010010'00000000 */
Suppose 'command' is the byte to send (I hope there is a strobe somewhere...).
I would simply make 8 lines of code like this (If I well understand the port registers of the STM32):
if (command & 1) GPIOC->BSRR |= 1 << 12; else GPIOC->BSRR &= ~(1 << 12);
if (command & 2) GPIOC->BSRR |= 1 << 11; else GPIOC->BSRR &= ~(1 << 11);
...
if (command & 128) GPIOA->BSRR |= 1 << 9; else GPIOA->BSRR &= ~(1 << 9);
Maybe this is quite raw, but it works and it is easy to understand (i.e. more difficult to make typos). Next time tell the hardware designer to arrange wires just a little better... it is hard to think at something worse than this, the bits seem reversed just to see if the software guy can cope with them!

Grove I2C display not working on Raspberry Pi 3B

I only have my RPi 3B and a I²C display, I don't own any GrovePi hat and I want to show some text to the said display. Is there a way to make it work?
My display.
i2cdetect -y 1 shows this result, meaning the RPi is detecting the I²C display and it should work. But nothing seemed to be showing on the display, except for the full block on the first row.
I've tried literally everything on the internet, some library worked (as in throwing no errors) but the display still stays the same, full block on the first row.
I've installed python3, smbus, smbus2 and i2c-tools. I've changed the address to 3e.
My most recent *.py file. It does write 'LCD printing' yet nothing else works.
I don't find a way to change the contrast of the LCD (no potentiometer or whatsoever)
#!/usr/bin/python3
import smbus2 as smbus
import time
# Define some device parameters
I2C_ADDR = 0x3e # I2C device address, if any error, change this address to 0x3f
LCD_WIDTH = 16 # Maximum characters per line
# Define some device constants
LCD_CHR = 1 # Mode - Sending data
LCD_CMD = 0 # Mode - Sending command
LCD_LINE_1 = 0x80 # LCD RAM address for the 1st line
LCD_LINE_2 = 0xC0 # LCD RAM address for the 2nd line
LCD_LINE_3 = 0x94 # LCD RAM address for the 3rd line
LCD_LINE_4 = 0xD4 # LCD RAM address for the 4th line
LCD_BACKLIGHT = 0x08 # On
ENABLE = 0b00000100 # Enable bit
# Timing constants
E_PULSE = 0.0005
E_DELAY = 0.0005
# Open I2C interface
# bus = smbus.SMBus(0) # Rev 1 Pi uses 0
bus = smbus.SMBus(1) # Rev 2 Pi uses 1
def lcd_init():
# Initialise display
lcd_byte(0x33, LCD_CMD) # 110011 Initialise
lcd_byte(0x32, LCD_CMD) # 110010 Initialise
lcd_byte(0x06, LCD_CMD) # 000110 Cursor move direction
lcd_byte(0x0C, LCD_CMD) # 001100 Display On,Cursor Off, Blink Off
lcd_byte(0x28, LCD_CMD) # 101000 Data length, number of lines, font size
lcd_byte(0x01, LCD_CMD) # 000001 Clear display
time.sleep(E_DELAY)
def lcd_byte(bits, mode):
# Send byte to data pins
# bits = the data
# mode = 1 for data
# 0 for command
bits_high = mode | (bits & 0xF0) | LCD_BACKLIGHT
bits_low = mode | ((bits << 4) & 0xF0) | LCD_BACKLIGHT
# High bits
bus.write_byte(I2C_ADDR, bits_high)
lcd_toggle_enable(bits_high)
# Low bits
bus.write_byte(I2C_ADDR, bits_low)
lcd_toggle_enable(bits_low)
def lcd_toggle_enable(bits):
# Toggle enable
time.sleep(E_DELAY)
bus.write_byte(I2C_ADDR, (bits | ENABLE))
time.sleep(E_PULSE)
bus.write_byte(I2C_ADDR, (bits & ~ENABLE))
time.sleep(E_DELAY)
def lcd_string(message, line):
# Send string to display
message = message.ljust(LCD_WIDTH, " ")
lcd_byte(line, LCD_CMD)
for i in range(LCD_WIDTH):
lcd_byte(ord(message[i]), LCD_CHR)
if __name__ == '__main__':
lcd_init()
while True:
# Send some test
lcd_string("Hello ", LCD_LINE_1)
lcd_string(" World", LCD_LINE_2)
print('LCD printing!')
time.sleep(3)

Would my solution work for 8-bit bus addressing using BSRR and BRR?

I have set an 8-bit bus on (PD0:PD7) on the stm32 MCU to send addresses to another chip (0:255). I am interested if a function like below would work for fast change in addresses. I could not find an example directly showing register to be equal to integer so I want to confirm it would work. I need a function to which I will give an integer value for the address (0:255) and it will set the 8 pins of the bus with this value:
void chipbus(uint16_t bus8){
GPIOD->regs->BSRR = bus8; // set all the '1' in bus8 to high
GPIOD->regs->BRR = 255-bus8; // 255-bus8 inverts the 8 bits
// BRR to set the new '1' to low
}
If this solution works, I am curious also if I change the bus to ports PD5:PD12 would my function work as:
void chipbus(uint16_t bus8){
GPIOD->regs->BSRR = bus8*32; // set all '1' in bus8 to high
// multiply by 32 to shift 5 bits/pins
GPIOD->regs->BRR = (255-bus8)*32; // 255-bus8 inverts the 8 bits
// BRR to set the new '1' to low
}
Thank you!
Yes, both should work. However, a more recognisable but equivalent formulation would be:
void chipbus(uint16_t bus8) {
GPIOD->regs->BSRR = bus8; // set all the '1' in bus8 to high
GPIOD->regs->BRR = (~bus8) & 0xFF; // inverts the 8 bits // BRR to set the new '1' to low
}
void chipbus(uint16_t bus8) {
GPIOD->regs->BSRR = bus8<<5; // set all '1' in bus8 to high, shift 5 bits
GPIOD->regs->BRR = ((~bus8)&0xFF)<<5; // inverts the 8 bits
}
But, there is an even faster way. BSRR is a 32bit register than can both set and reset. You can combine the two write accesses into one:
void chipbus(uint16_t bus8) {
GPIOD->regs->BSRR =
(bus8<<5) | (((~bus8) & 0xFF) << (16+5));
}
Happy bit-fiddling!
Yes, it'd definitely work. However, as others have noted, it's advisable to set the outputs in a single operation.
Taking advantage of the full 32 bit BSRR register, it can be done without inverting the data bits:
GPIOD->regs->BSRR = bus8 | (0xFF << 16);
or
GPIOD->regs->BSRR = (bus8 << 5) | (0xFF << (16 + 5));
because BSRR has the functionality to set some bits and reset some others in a single write operation, and when both the set and reset bits for a particular pin is set, the output becomes 1.
I wouldn't recommend using this approach. Writing to BSRR and BRR as two separate steps means that the bus will transition through an unintended state where some bits are still set from the previous value.
Instead, consider writing directly to the GPIO output data register (ODR). If you need to preserve the original value of the upper bits in the port, you can do that on the CPU side:
GPIOD->regs->ODR = (GPIOD->regs->ODR & 0xff00) | (bus8 & 0x00ff);

STM32 SPI data is sent the reverse way

I've been experimenting with writing to an external EEPROM using SPI and I've had mixed success. The data does get shifted out but in an opposite manner. The EEPROM requires a start bit and then an opcode which is essentially a 2-bit code for read, write and erase. Essentially the start bit and the opcode are combined into one byte. I'm creating a 32-bit unsigned int and then bit-shifting the values into it. When I transmit these I see that the actual data is being seen first and then the SB+opcode and then the memory address. How do I reverse this to see the opcode first then the memory address and then the actual data. As seen in the image below, the data is BCDE, SB+opcode is 07 and the memory address is 3F. The correct sequence should be 07, 3F and then BCDE (I think!).
Here is the code:
uint8_t mem_addr = 0x3F;
uint16_t data = 0xBCDE;
uint32_t write_package = (ERASE << 24 | mem_addr << 16 | data);
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
HAL_SPI_Transmit(&hspi1, &write_package, 2, HAL_MAX_DELAY);
HAL_Delay(10);
}
/* USER CODE END 3 */
It looks like as your SPI interface is set up to process 16 bit halfwords at a time. Therefore it would make sense to break up the data to be sent into 16 bit halfwords too. That would take care of the ordering.
uint8_t mem_addr = 0x3F;
uint16_t data = 0xBCDE;
uint16_t write_package[2] = {
(ERASE << 8) | mem_addr,
data
};
HAL_SPI_Transmit(&hspi1, (uint8_t *)write_package, 2, HAL_MAX_DELAY);
EDIT
Added an explicit cast. As noted in the comments, without the explicit cast it wouldn't compile as C++ code, and cause some warnings as C code.
You're packing your information into a 32 bit integer, on line 3 of your code you have the decision about which bits of data are placed where in the word. To change the order you can replace the line with:
uint32_t write_package = ((data << 16) | (mem_addr << 8) | (ERASE));
That is shifting data 16 bits left into the most significant 16 bits of the word, shifting mem_addr up by 8 bits and or-ing it in, and then adding ERASE in the least significant bits.
Your problem is the Endianness.
By default the STM32 uses little edian so the lowest byte of the uint32_t is stored at the first adrress.
If I'm right this is the declaration if the transmit function you are using:
HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
It requires a pointer to uint8_t as data (and not a uint32_t) so you should get at least a warning if you compile your code.
If you want to write code that is independent of the used endianess, you should store your data into an array instead of one "big" variable.
uint8_t write_package[4];
write_package[0] = ERASE;
write_package[1] = mem_addr;
write_package[2] = (data >> 8) & 0xFF;
write_package[3] = (data & 0xFF);

Need help identifying and computing a number representation

I need help identifying the following number format.
For example, the following number format in MIB:
0x94 0x78 = 2680
0x94 0x78 in binary: [1001 0100] [0111 1000]
It seems that if the MSB is 1, it means another character follows it. And if it is 0, it is the end of the number.
So the value 2680 is [001 0100] [111 1000], formatted properly is [0000 1010] [0111 1000]
What is this number format called and what's a good way for computing this besides bit manipulation and shifting to a larger unsigned integer?
I have seen this called either 7bhm (7-bit has-more) or VLQ (variable length quantity); see http://en.wikipedia.org/wiki/Variable-length_quantity
This is stored big-endian (most significant byte first), as opposed to the C# BinaryReader.Read7BitEncodedInt method described at Encoding an integer in 7-bit format of C# BinaryReader.ReadString
I am not aware of any method of decoding other than bit manipulation.
Sample PHP code can be found at
http://php.net/manual/en/function.intval.php#62613
or in Python I would do something like
def encode_7bhm(i):
o = [ chr(i & 0x7f) ]
i /= 128
while i > 0:
o.insert(0, chr(0x80 | (i & 0x7f)))
i /= 128
return ''.join(o)
def decode_7bhm(s):
o = 0
for i in range(len(s)):
v = ord(s[i])
o = 128*o + (v & 0x7f)
if v & 0x80 == 0:
# found end of encoded value
break
else:
# out of string, and end not found - error!
raise TypeError
return o