Reasonable Export of Relational to Non-Relational Data - rdbms

We have different products that rely on relational databases for various reasons, basically the transactional nature of the operations (atomicity, consistency, etc.). This is not going to change any time soon.
Given this scenario, are there any possible justifications to export the data to a NoSQL solution? Maybe Datawarehousing, Analytics, etc.
Any comments are welcome.

"Data" is just a vague generality without a data structure. "Relational" means the data structure is relations/tables with generic queries. (Not automatically interleaved execution of semantically atomic concurrent transactions, which just happens to become feasible given relational set-at-a-time operators.) Need for specialized data structures or queries suggests augmenting a relational system interface or implementation. "NoSQL" is a catch-all for all sorts of such systems with special-case abstractions and/or implementations. But they don't need to be non-relational in interface. They just need to be not what current "relational" DBMSs provide. Given that they exist, one can reasonably export to (or import from) them when needed.
Unfortunately the relational model is not generally understood (including by "relational" DBMSs), so instead these systems reject what they could simply extend.

Related

Ecommerce/Shopping Cart (and checkout process) : use Relational or NoSQL

For the use-case of Shopping cart (and checkout process) for E-commerce web application, what is better to use a Relational DB (RDBMS) or NoSQL DB as MongoDB/Cassandra/others ?
For the catalog perspective, NoSQL makes ideal use-case with flexible schema, horizontal scaling of data/nodes.
What are the pros/cons of each approach for Shopping Cart use-case?
There are many differences between SQL and noSQL databases. Those differences are what gives each storage type its pros and cons on different situations.
Since both database types would work in the end, it all really depends on the context or on your implementation.
In this specific case (shopping cart), the pros and cons are probably all related to the consistency of your data and scalability.
noSQL databses are better (pros) suited for more "dynamic" applications (data analysis, IoT, multimedia, etc.). Such applications use data that usually doesn't have a rigid structure and comes in very large volumes. This means that there's no need to develop a complex database model and it's cheaper to store large amounts of data throughout separate "nodes". This also makes noSQL databases easier to expand and scale. The main problem (cons) is the lack of structure. This will make it harder for you to run analysis and to keep track of every detail of the database.
Meanwhile, SQL databases are useful (pros) when your data is well-structured and mostly consistent. As you know, SQL stores data in columns and rows, this gives SQL an advantage if you want to generate detailed statistics of your data and also if you want to keep an organized record of everything that happens in your app. The main downside (cons) is that the design of an SQL database takes more time and also it's probably more expensive (scalability and physical storage require more hardware) to maintain a SQL database.
Performancewise, I would argue that in this usecase there wouldn't be any major difference.
If you think about all of what i just wrote, I would say that in the context of a shopping cart, the SQL model is the way to go. A shopping cart won't require lots of upgrades and changes (scalability), its data is always structured (name of item, price, etc.) and you might want to keep track of every transaction a user makes in your ecommerce application (for accountability and safety reasons).
tl;dr use SQL because the data in a shoppingcart usecase is structured and consistent.
good luck!
The general pros/cons of something like Cassandra vs postgres/mysql look like:
Cassandra handles multi-DC HA much better.
Cassandra handles high write volume much better.
Cassandra allows you to reboot hosts without downtime because you'll have multiple replicas (and you wont have to worry about WAL replay or binlog replay or weird master-master replication problems, though some RDBMS addons make this easier for MySQL and Postgres than it used to be).
Cassandra allows you to scale better (linear scaling with number of instances up to ~1200 or so instances)
MySQL/Postgres allow you to build queries as your business requirements evolve by adding indices to existing tables; Cassandra expects you to know the queries in advance and do data modeling before you start writing data.
MySQL/Postgres tends to be easier to use, and you'll find a ton of libraries/UIs/etc to help you get started
MySQL/Postgres offer real transactions / MVCC - Casssandra has lightweight transactions limited to operations on a single key with much weaker isolation/atomicity guarantees.
Ultimately, though, unless you believe your shopping cart is going to handle thousands of concurrent users, it probably doesn't matter (as long as you use something with real data durability guarantees): use what you're most comfortable using. I'd use Cassandra because I know Cassandra very well, but if you're not great with Cassandra (or whatever), use what you know best.

Why would you use NoSQL to build posts/comments over relational? [duplicate]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 9 years ago.
Improve this question
I've been hearing things about NoSQL and that it may eventually become the replacement for SQL DB storage methods due to the fact that DB interaction is often a bottle neck for speed on the web.
So I just have a few questions:
What exactly is it?
How does it work?
Why would it be better than using a SQL Database? And how much better is it?
Is the technology too new to start implementing yet or is it worth taking a look into?
There is no such thing as NoSQL!
NoSQL is a buzzword.
For decades, when people were talking about databases, they meant relational databases. And when people were talking about relational databases, they meant those you control with Edgar F. Codd's Structured Query Language. Storing data in some other way? Madness! Anything else is just flatfiles.
But in the past few years, people started to question this dogma. People wondered if tables with rows and columns are really the only way to represent data. People started thinking and coding, and came up with many new concepts how data could be organized. And they started to create new database systems designed for these new ways of working with data.
The philosophies of all these databases were different. But one thing all these databases had in common, was that the Structured Query Language was no longer a good fit for using them. So each database replaced SQL with their own query languages. And so the term NoSQL was born, as a label for all database technologies which defy the classic relational database model.
So what do NoSQL databases have in common?
Actually, not much.
You often hear phrases like:
NoSQL is scalable!
NoSQL is for BigData!
NoSQL violates ACID!
NoSQL is a glorified key/value store!
Is that true? Well, some of these statements might be true for some databases commonly called NoSQL, but every single one is also false for at least one other. Actually, the only thing NoSQL databases have in common, is that they are databases which do not use SQL. That's it. The only thing that defines them is what sets them apart from each other.
So what sets NoSQL databases apart?
So we made clear that all those databases commonly referred to as NoSQL are too different to evaluate them together. Each of them needs to be evaluated separately to decide if they are a good fit to solve a specific problem. But where do we begin? Thankfully, NoSQL databases can be grouped into certain categories, which are suitable for different use-cases:
Document-oriented
Examples: MongoDB, CouchDB
Strengths: Heterogenous data, working object-oriented, agile development
Their advantage is that they do not require a consistent data structure. They are useful when your requirements and thus your database layout changes constantly, or when you are dealing with datasets which belong together but still look very differently. When you have a lot of tables with two columns called "key" and "value", then these might be worth looking into.
Graph databases
Examples: Neo4j, GiraffeDB.
Strengths: Data Mining
While most NoSQL databases abandon the concept of managing data relations, these databases embrace it even more than those so-called relational databases.
Their focus is at defining data by its relation to other data. When you have a lot of tables with primary keys which are the primary keys of two other tables (and maybe some data describing the relation between them), then these might be something for you.
Key-Value Stores
Examples: Redis, Cassandra, MemcacheDB
Strengths: Fast lookup of values by known keys
They are very simplistic, but that makes them fast and easy to use. When you have no need for stored procedures, constraints, triggers and all those advanced database features and you just want fast storage and retrieval of your data, then those are for you.
Unfortunately they assume that you know exactly what you are looking for. You need the profile of User157641? No problem, will only take microseconds. But what when you want the names of all users who are aged between 16 and 24, have "waffles" as their favorite food and logged in in the last 24 hours? Tough luck. When you don't have a definite and unique key for a specific result, you can't get it out of your K-V store that easily.
Is SQL obsolete?
Some NoSQL proponents claim that their favorite NoSQL database is the new way of doing things, and SQL is a thing of the past.
Are they right?
No, of course they aren't. While there are problems SQL isn't suitable for, it still got its strengths. Lots of data models are simply best represented as a collection of tables which reference each other. Especially because most database programmers were trained for decades to think of data in a relational way, and trying to press this mindset onto a new technology which wasn't made for it rarely ends well.
NoSQL databases aren't a replacement for SQL - they are an alternative.
Most software ecosystems around the different NoSQL databases aren't as mature yet. While there are advances, you still haven't got supplemental tools which are as mature and powerful as those available for popular SQL databases.
Also, there is much more know-how for SQL around. Generations of computer scientists have spent decades of their careers into research focusing on relational databases, and it shows: The literature written about SQL databases and relational data modelling, both practical and theoretical, could fill multiple libraries full of books. How to build a relational database for your data is a topic so well-researched it's hard to find a corner case where there isn't a generally accepted by-the-book best practice.
Most NoSQL databases, on the other hand, are still in their infancy. We are still figuring out the best way to use them.
What exactly is it?
On one hand, a specific system, but it has also become a generic word for a variety of new data storage backends that do not follow the relational DB model.
How does it work?
Each of the systems labelled with the generic name works differently, but the basic idea is to offer better scalability and performance by using DB models that don't support all the functionality of a generic RDBMS, but still enough functionality to be useful. In a way it's like MySQL, which at one time lacked support for transactions but, exactly because of that, managed to outperform other DB systems. If you could write your app in a way that didn't require transactions, it was great.
Why would it be better than using a SQL Database? And how much better is it?
It would be better when your site needs to scale so massively that the best RDBMS running on the best hardware you can afford and optimized as much as possible simply can't keep up with the load. How much better it is depends on the specific use case (lots of update activity combined with lots of joins is very hard on "traditional" RDBMSs) - could well be a factor of 1000 in extreme cases.
Is the technology too new to start implementing yet or is it worth taking a look into?
Depends mainly on what you're trying to achieve. It's certainly mature enough to use. But few applications really need to scale that massively. For most, a traditional RDBMS is sufficient. However, with internet usage becoming more ubiquitous all the time, it's quite likely that applications that do will become more common (though probably not dominant).
Since someone said that my previous post was off-topic, I'll try to compensate :-) NoSQL is not, and never was, intended to be a replacement for more mainstream SQL databases, but a couple of words are in order to get things in the right perspective.
At the very heart of the NoSQL philosophy lies the consideration that, possibly for commercial and portability reasons, SQL engines tend to disregard the tremendous power of the UNIX operating system and its derivatives.
With a filesystem-based database, you can take immediate advantage of the ever-increasing capabilities and power of the underlying operating system, which have been steadily increasing for many years now in accordance with Moore's law. With this approach, many operating-system commands become automatically also "database operators" (think of "ls" "sort", "find" and the other countless UNIX shell utilities).
With this in mind, and a bit of creativity, you can indeed devise a filesystem-based database that is able to overcome the limitations of many common SQL engines, at least for specific usage patterns, which is the whole point behind NoSQL's philosophy, the way I see it.
I run hundreds of web sites and they all use NoSQL to a greater or lesser extent. In fact, they do not host huge amounts of data, but even if some of them did I could probably think of a creative use of NoSQL and the filesystem to overcome any bottlenecks. Something that would likely be more difficult with traditional SQL "jails". I urge you to google for "unix", "manis" and "shaffer" to understand what I mean.
If I recall correctly, it refers to types of databases that don't necessarily follow the relational form. Document databases come to mind, databases without a specific structure, and which don't use SQL as a specific query language.
It's generally better suited to web applications that rely on performance of the database, and don't need more advanced features of Relation Database Engines. For example, a Key->Value store providing a simple query by id interface might be 10-100x faster than the corresponding SQL server implementation, with a lower developer maintenance cost.
One example is this paper for an OLTP Tuple Store, which sacrificed transactions for single threaded processing (no concurrency problem because no concurrency allowed), and kept all data in memory; achieving 10-100x better performance as compared to a similar RDBMS driven system. Basically, it's moving away from the 'One Size Fits All' view of SQL and database systems.
In practice, NoSQL is a database system which supports fast access to large binary objects (docs, jpgs etc) using a key based access strategy. This is a departure from the traditional SQL access which is only good enough for alphanumeric values. Not only the internal storage and access strategy but also the syntax and limitations on the display format restricts the traditional SQL. BLOB implementations of traditional relational databases too suffer from these restrictions.
Behind the scene it is an indirect admission of the failure of the SQL model to support any form of OLTP or support for new dataformats. "Support" means not just store but full access capabilities - programmatic and querywise using the standard model.
Relational enthusiasts were quick to modify the defnition of NoSQL from Not-SQL to Not-Only-SQL to keep SQL still in the picture! This is not good especially when we see that most Java programs today resort to ORM mapping of the underlying relational model. A new concept must have a clearcut definition. Else it will end up like SOA.
The basis of the NoSQL systems lies in the random key - value pair. But this is not new. Traditional database systems like IMS and IDMS did support hashed ramdom keys (without making use of any index) and they still do. In fact IDMS already has a keyword NONSQL where they support SQL access to their older network database which they termed as NONSQL.
It's like Jacuzzi: both a brand and a generic name. It's not just a specific technology, but rather a specific type of technology, in this case referring to large-scale (often sparse) "databases" like Google's BigTable or CouchDB.
NoSQL the actual program appears to be a relational database implemented in awk using flat files on the backend. Though they profess, "NoSQL essentially has no arbitrary limits, and can work where other products can't. For example there is no limit on data field size, the number of columns, or file size" , I don't think it is the large scale database of the future.
As Joel says, massively scalable databases like BigTable or HBase, are much more interesting. GQL is the query language associated with BigTable and App Engine. It's largely SQL tweaked to avoid features Google considers bottle-necks (like joins). However, I haven't heard this referred to as "NoSQL" before.
NoSQL is a database system which doesn't use string based SQL queries to fetch data.
Instead you build queries using an API they will provide, for example Amazon DynamoDB is a good example of a NoSQL database.
NoSQL databases are better for large applications where scalability is important.
Does NoSQL mean non-relational database?
Yes, NoSQL is different from RDBMS and OLAP. It uses looser consistency models than traditional relational databases.
Consistency models are used in distributed systems like distributed shared memory systems or distributed data store.
How it works internally?
NoSQL database systems are often highly optimized for retrieval and appending operations and often offer little functionality beyond record storage (e.g. key-value stores). The reduced run-time flexibility compared to full SQL systems is compensated by marked gains in scalability and performance for certain data models.
It can work on Structured and Unstructured Data. It uses Collections instead of Tables
How do you query such "database"?
Watch SQL vs NoSQL: Battle of the Backends; it explains it all.

What's the difference between RDBMS and NoSQL in nature?

I don't know if this topic has been discussed or not. If yes, please point me there.
I mean the REAL difference, from the perspective of design philosophy. Someone's said that RDBMS is like automatic transmission vehicle, and NoSQL is like manual transmission vehicle. RDBMS is more like a black box, but NoSQL gives you more control on the way to organize data and thus the computation complexity of a query is predictable.
However, as we see, MongoDB is moving to provide similar query interface as RDBMS. Will RDBMS and NoSQL go to the same destination via different path?
http://it.toolbox.com/blogs/madgreek/nosql-vs-rdbms-apples-and-oranges-37713
This will give you a good understanding.
"Extremely large datasets are often event based transactions that occur in chronological order. Examples are weblogs, shopping transactions, manufacturing data from assembly line devices, scientific data collections, etc. These types of data accumulate in large numbers every second and can take a RDBMS with all of its overhead to its knees. But for OLTP processing, nothing beats the combination of data quality and performance of a well designed RDBMS."
Simply put, strictly philosophically, it's the difference between empty file open in Notepad and a template table in Excel.

recommendations for a dbms for an EAV system with mostly insert and select operations needs on .net stack

In the project I have been working on, the data modeling requirements are:
A system consisting of N number of clients with each having N number of events. An event is an entity with a required name and timestamp at which it occurs. Optionally, an event may have N number of properties (key/value pares) defining attributes that a client want to store with the particular instance of that event.
The system will have mostly:
inserts – events are logged but never updated.
selects – reports/actions will be generated/executed based on events and properties of any possible combinations.
The requirements reflect an entity-attribute-value (EAV) data model. After researching for sometimes, I feel that a relational dbms like Sql Server might not be a good fit for this. (correct me if I'm wrong!)
So I'm leaning toward NoSql option like MongoDb/CouchDb/RavenDb etc.
My questions are:
What is the best fit in available NoSql solutions keeping in view of my system's heavy insert/select needs?
I'm also open for relational option if these requirements can be translated into relational schema. Although I personally doubt this, but after reading performance DBA answers (like referenced here), I got curious. However, I couldn't figure out myself an optimal relational model for my requirements, perhaps the system being rather generic.
thanks!
MongoDB really shines when you write unstructured data to it (like your event). Also, it is able to sustain pretty heavy write load. However, it's not very good for reporting. At least, for reporting in the traditional sense.
So, if your reporting needs are simple, you might get away with some simple map-reduce jobs. Otherwise you can export data to a relational database (nightly job, for example) and report the hell out of it.
Such hybrid solution is pretty common (in my experience).

Example of a task that a NoSQL database can't handle (if any)

I would like to test the NoSQL world. This is just curiosity, not an absolute need (yet).
I have read a few things about the differences between SQL and NoSQL databases. I'm convinced about the potential advantages, but I'm a little worried about cases where NoSQL is not applicable. If I understand NoSQL databases essentially miss ACID properties.
Can someone give an example of some real world operation (for example an e-commerce site, or a scientific application, or...) that an ACID relational database can handle but where a NoSQL database could fail miserably, either systematically with some kind of race condition or because of a power outage, etc ?
The perfect example will be something where there can't be any workaround without modifying the database engine. Examples where a NoSQL database just performs poorly will eventually be another question, but here I would like to see when theoretically we just can't use such technology.
Maybe finding such an example is database specific. If this is the case, let's take MongoDB to represent the NoSQL world.
Edit:
to clarify this question I don't want a debate about which kind of database is better for certain cases. I want to know if this technology can be an absolute dead-end in some cases because no matter how hard we try some kind of features that a SQL database provide cannot be implemented on top of nosql stores.
Since there are many nosql stores available I can accept to pick an existing nosql store as a support but what interest me most is the minimum subset of features a store should provide to be able to implement higher level features (like can transactions be implemented with a store that don't provide X...).
This question is a bit like asking what kind of program cannot be written in an imperative/functional language. Any Turing-complete language and express every program that can be solved by a Turing Maching. The question is do you as a programmer really want to write a accounting system for a fortune 500 company in non-portable machine instructions.
In the end, NoSQL can do anything SQL based engines can, the difference is you as a programmer may be responsible for logic in something Like Redis that MySQL gives you for free. SQL databases take a very conservative view of data integrity. The NoSQL movement relaxes those standards to gain better scalability, and to make tasks that are common to Web Applications easier.
MongoDB (my current preference) makes replication and sharding (horizontal scaling) easy, inserts very fast and drops the requirement for a strict scheme. In exchange users of MongoDB must code around slower queries when an index is not present, implement transactional logic in the app (perhaps with three phase commits), and we take a hit on storage efficiency.
CouchDB has similar trade-offs but also sacrifices ad-hoc queries for the ability to work with data off-line then sync with a server.
Redis and other key value stores require the programmer to write much of the index and join logic that is built in to SQL databases. In exchange an application can leverage domain knowledge about its data to make indexes and joins more efficient then the general solution the SQL would require. Redis also require all data to fit in RAM but in exchange gives performance on par with Memcache.
In the end you really can do everything MySQL or Postgres do with nothing more then the OS file system commands (after all that is how the people that wrote these database engines did it). It all comes down to what you want the data store to do for you and what you are willing to give up in return.
Good question. First a clarification. While the field of relational stores is held together by a rather solid foundation of principles, with each vendor choosing to add value in features or pricing, the non-relational (nosql) field is far more heterogeneous.
There are document stores (MongoDB, CouchDB) which are great for content management and similar situations where you have a flat set of variable attributes that you want to build around a topic. Take site-customization. Using a document store to manage custom attributes that define the way a user wants to see his/her page is well suited to the platform. Despite their marketing hype, these stores don't tend to scale into terabytes that well. It can be done, but it's not ideal. MongoDB has a lot of features found in relational databases, such as dynamic indexes (up to 40 per collection/table). CouchDB is built to be absolutely recoverable in the event of failure.
There are key/value stores (Cassandra, HBase...) that are great for highly-distributed storage. Cassandra for low-latency, HBase for higher-latency. The trick with these is that you have to define your query needs before you start putting data in. They're not efficient for dynamic queries against any attribute. For instance, if you are building a customer event logging service, you'd want to set your key on the customer's unique attribute. From there, you could push various log structures into your store and retrieve all logs by customer key on demand. It would be far more expensive, however, to try to go through the logs looking for log events where the type was "failure" unless you decided to make that your secondary key. One other thing: The last time I looked at Cassandra, you couldn't run regexp inside the M/R query. Means that, if you wanted to look for patterns in a field, you'd have to pull all instances of that field and then run it through a regexp to find the tuples you wanted.
Graph databases are very different from the two above. Relations between items(objects, tuples, elements) are fluid. They don't scale into terabytes, but that's not what they are designed for. They are great for asking questions like "hey, how many of my users lik the color green? Of those, how many live in California?" With a relational database, you would have a static structure. With a graph database (I'm oversimplifying, of course), you have attributes and objects. You connect them as makes sense, without schema enforcement.
I wouldn't put anything critical into a non-relational store. Commerce, for instance, where you want guarantees that a transaction is complete before delivering the product. You want guaranteed integrity (or at least the best chance of guaranteed integrity). If a user loses his/her site-customization settings, no big deal. If you lose a commerce transation, big deal. There may be some who disagree.
I also wouldn't put complex structures into any of the above non-relational stores. They don't do joins well at-scale. And, that's okay because it's not the way they're supposed to work. Where you might put an identity for address_type into a customer_address table in a relational system, you would want to embed the address_type information in a customer tuple stored in a document or key/value. Data efficiency is not the domain of the document or key/value store. The point is distribution and pure speed. The sacrifice is footprint.
There are other subtypes of the family of stores labeled as "nosql" that I haven't covered here. There are a ton (122 at last count) different projects focused on non-relational solutions to data problems of various types. Riak is yet another one that I keep hearing about and can't wait to try out.
And here's the trick. The big-dollar relational vendors have been watching and chances are, they're all building or planning to build their own non-relational solutions to tie in with their products. Over the next couple years, if not sooner, we'll see the movement mature, large companies buy up the best of breed and relational vendors start offering integrated solutions, for those that haven't already.
It's an extremely exciting time to work in the field of data management. You should try a few of these out. You can download Couch or Mongo and have them up and running in minutes. HBase is a bit harder.
In any case, I hope I've informed without confusing, that I have enlightened without significant bias or error.
RDBMSes are good at joins, NoSQL engines usually aren't.
NoSQL engines is good at distributed scalability, RDBMSes usually aren't.
RDBMSes are good at data validation coinstraints, NoSQL engines usually aren't.
NoSQL engines are good at flexible and schema-less approaches, RDBMSes usually aren't.
Both approaches can solve either set of problems; the difference is in efficiency.
Probably answer to your question is that mongodb can handle any task (and sql too). But in some cases better to choose mongodb, in others sql database. About advantages and disadvantages you can read here.
Also as #Dmitry said mongodb open door for easy horizontal and vertical scaling with replication & sharding.
RDBMS enforce strong consistency while most no-sql are eventual consistent. So at a given point in time when data is read from a no-sql DB it might not represent the most up-to-date copy of that data.
A common example is a bank transaction, when a user withdraw money, node A is updated with this event, if at the same time node B is queried for this user's balance, it can return an outdated balance. This can't happen in RDBMS as the consistency attribute guarantees that data is updated before it can be read.
RDBMs are really good for quickly aggregating sums, averages, etc. from tables. e.g. SELECT SUM(x) FROM y WHERE z. It's something that is surprisingly hard to do in most NoSQL databases, if you want an answer at once. Some NoSQL stores provide map/reduce as a way of solving the same thing, but it is not real time in the same way it is in the SQL world.