How to Depict Either/Or Inheritance in a UML diagram? - class

So lets say I have a class CelebrityDog. CelebrityDog can either be a BigDog or a SmallDog depending on what the user wants.
It will inherit the properties of one of them, but not of both. How would I depict this in a UML diagram?

UML perspective
I am sorry to come with an unpleasant answer, but this is not possible in UML according to the UML 2.5 standard, section 9.2.4.1:
Generalizations define generalization/specialization relationships
between Classifiers. Each Generalization relates a specific Classifier
to a more general Classifier.
...
An instance of a Classifier is also an (indirect) instance of each of
its generalizations. Any Constraints applying to instances of the
generalizations also apply to instances of the Classifier.
In other words, an inheritance relation in UML is a relationship between a generalization and a specialization. A class can be the specialization of several more generalization class but always in the same time (i.e. multiple inheritance.
Design perspective
I'll add to the already unpleasant answer, that this is anyways a very bad desgin, that you will not be able to implement in most of the mainstream languages.
You can improve with a model that is closer to the reality of the relationsips:
CelebrityDog is a Dog (inheritance, this is always true)
Dog has a DogSize (association, i.e. composition when implementing) which can change over time
DogSize can be specialized into BigDogSize or SmallDogSize
Et voilà !

Dog is the top level class. It does not contain a size attribute.
CelebrityDog derives from Dog (as do normal, EverydayDogs).
BigDog and SmallDog derive from CelebrityDog. Perhaps change their class names to BigCelebrityDog and SmallCelebrityDog.
It is possible to use multiple inheritance to solve this, but that can be confusing.

Related

How to read this UML diagram?

I work in the aviation industry, and I am trying to understand this UML diagram. I did a little bit of UML in college. Can you help me to interpret this diagram?
What is the difference between << extend >> and << select >>?
What do the big black arrows mean?
I didn't understand how to read the graph.
«extend»and «select» are stereotypes which were given a certain meaning in the domain of that model. Usually a profile is used to define the sterotypes and their meaning. So the best is you contact the author of the diagram and ask about it. There is no general answer. It looks a bit like these are meant to be requirements.
The "black arrows" with the lozenge are associations that are given a composite aggregation attribute. The lozenge-side is responsible for the lifetime of the other side. Means it will destroy them when it is destroyed itself.
Fun note about the «class» (as per comment from Axel Scheithauer from p. 99 of UML 2.5:
If the default notation is used for a Classifier, a keyword corresponding to the metaclass of the Classifier shall be shown in guillemets above the name. The keywords for each metaclass are listed in Annex C and are specified in the notation for each subclass of Classifier. No keyword is needed to indicate that the metaclass is Class.
So putting that keyword there is like painting "car" on a car to make it a car, obviously.

Difference between an instance of a class and a class representing an instance already?

I use Java as an example but this is more of a general OOP design related question.
Lets take the IOExceptions in Java as an example. Why is there a class FileNotFoundException for example? Should not that be an instance of a IOException where the cause is FileNotFound? I would say FileNotFoundException is an instance of IOException. Where does this end? FileNotFoundButOnlyCheckedOnceException, FileNotFoundNoMatterHowHardITriedException..?
I have also seen code in projects I worked in where classes such as FirstLineReader and LastLineReader existed. To me, such classes actually represent instances, but I see such design in many places. Look at the Spring Framework source code for example, it comes with hundreds of such classes, where every time I see one I see an instance instead of a blueprint. Are not classes meant to be blueprints?
What I am trying to ask is, how does one make the decision between these 2 very simple options:
Option 1:
enum DogBreed {
Bulldog, Poodle;
}
class Dog {
DogBreed dogBreed;
public Dog(DogBreed dogBreed) {
this.dogBreed = dogBreed;
}
}
Option 2:
class Dog {}
class Bulldog extends Dog {
}
class Poodle extends Dog {
}
The first option gives the caller the requirement to configure the instance it is creating. In the second option, the class represents the instance itself already (as I see it, which might be totally wrong ..).
If you agree that these classes represent instances instead of blueprints, would you say it is a good practice to create classes that represents instances or is it totally wrong the way I am looking at this and my statement "classes representing instances" is just load of nonsense?
Edited
First of all: We know the Inheritance definition and we can find a lot of examples in SO and internet. But, I think we should look in-depth and a little more scientific.
Note 0:
Clarification about Inheritance and Instance terminology.
First let me name Development Scope for development life cycle, when we are modeling and programming our system and Runtime Scope for sometimes our system is running.
We have Classes and modeling and developing them in Development Scope. And Objects in Runtime Scope. There is no Object in Development Scope.
And in Object Oriented, the definition of Instance is: Creating an Object from a Class.
On the other hand, when we are talking about classes and object, we should clarify our Viewpoint about Development Scope and Runtime Scope.
So, with this introduction, I want to clarify Inheritance:
Inheritance is a relationship between Classes, NOT Objects.
Inheritance can exist in Development Scope, not in Runtime Scope. There is no Inheritance in Runtime Scope.
After running our project, there is no relationship between parent and child (If there is only Inheritance between a child class and parent class). So, the question is: What is super.invokeMethod1() or super.attribute1 ?, they are not the relationship between child and parent. All attributes and methods of a parent are transmitted to the child and that is just a notation to access the parts that transmitted from a parent.
Also, there are not any Objects in Development Scope. So there are not any Instances in Development scope. It is just Is-A and Has-A relationship.
Therefore, when we said:
I would say FileNotFoundException is a instance of an IOException
We should clarify about our Scope (Development and Runtime).
For example, If FileNotFoundException is an instance of IOException, then what is the relationship between a specific FileNotFoundException exception at runtime (the Object) and FileNotFoundException. Is it an instance of instance?
Note 1:
Why we used Inheritance? The goal of inheritance is to extending parent class functionalities (based on the same type).
This extension can happen by adding new attributes or new methods.
Or overriding existing methods.
In addition, by extending a parent class, we can reach to reusability too.
We can not restrict the parent class functionality (Liskov Principle)
We should be able to replace the child as parent in the system (Liskov Principle)
and etc.
Note 2:
The Width and Depth of Inheritance Hierarchies
The Width and Depth of Inheritance can be related to many factors:
The project: The complexity of the project (Type Complexity) and it's architecture and design. The size of the project, the number of classes and etc.
The team: The expertise of a team in controlling the complexity of the project.
and etc.
However, we have some heuristics about it. (Object-Oriented Design Heuristics, Arthur J. Riel)
In theory, inheritance hierarchies should be deep—the deeper, the better.
In practice, inheritance hierarchies should be no deeper than
an average person can keep in his or her short-term memory. A popular
value for this depth is six.
Note that they are heuristics and based on short-term memory number (7). And maybe the expertise of a team affect this number. But in many hierarchies like organizational charts is used.
Note 3:
When we are using Wrong Inheritance?
Based on :
Note 1: the goal of Inheritance (Extending parent class functionalities)
Note 2: the width and depth of Inheritance
In this conditions we use wrong inheritance:
We have some classes in an inheritance hierarchy, without extending parent class functionalities. The extension should be reasonable and should be enough to make a new class. The reasonable means from Observer's point of view. The observer can be Project Architect or Designer (Or other Architects and Designers).
We have a lot of classes in the inheritance hierarchy. It calls Over-Specialization. Some reasons may cause this:
Maybe we did not consider Note 1 (Extending parent functionalities)
Maybe our Modularization (packaging) is not correct. And we put many system use cases in one package and we should make Design Refactoring.
They are other reasons, but not exactly related this answer.
Note 4:
What should we do? When we are using Wrong Inheritance?
Solution 1: We should perform Design Refactoring to check the value of classes in order to Extending parent Functionality. In this refactoring, maybe many classes of system deleted.
Solution 2: We should perform Design Refactoring to modularization. In this refactoring, maybe some classes of our package transmitted to other packages.
Solution 3: Using the Composition over Inheritance.
We can use this technique for many reasons. Dynamic Hierarchy is one of popular reasons that we prefer Composition instead of Inheritance.
see Tim Boudreau (of Sun) notes here:
Object hierarchies don't scale
Solution 4: use instances over Subclasses
This question is about this technique. Let me named it instances over Subclasses.
When we can use it:
(Tip 1): Consider Note 1, when we do not exactly extend the parent class functionalities. Or the extensions are not reasonable and enough.
(Tip 2:) Consider Note 2, If we have a lot of subclasses (semi or identical classes) that extends the parent class a little and we can control this extension without inheritance. Note that it is not easy to say that. We should prove that it is not violating other Object Oriented Principles like Open-Close Principle.
What should we do?
Martin Fowler recommend (Book 1 page 232 and Book 2 page 251):
Replace Subclass with Fields, Change the methods to superclass fields and eliminate the subclasses.
We can use other techniques like enum as the question mentioned.
First, by including the exceptions question along with a general system design issue, you're really asking two different questions.
Exceptions are just complicated values. Their behaviors are trivial: provide the message, provide the cause, etc. And they're naturally hierarchical. There's Throwable at the top, and other exceptions repeatedly specialize it. The hierarchy simplifies exception handling by providing a natural filter mechanism: when you say catch (IOException..., you know you'll get everything bad that happened regarding i/o. Can't get much clearer than that. Testing, which can be ugly for big object hierarchies, is no problem for exceptions: There's little or nothing to test in a value.
It follows that if you are designing similar complex values with trivial behaviors, a tall inheritance hierarchy is a reasonable choice: Different kinds of tree or graph nodes constitute a good example.
Your second example seems to be about objects with more complex behaviors. These have two aspects:
Behaviors need to be tested.
Objects with complex behaviors often change their relationships with each other as systems evolve.
These are the reasons for the often heard mantra "composition over inheritance." It's been well-understood since the mid-90s that big compositions of small objects are generally easier to test, maintain, and change than big inheritance hierarchies of necessarily big objects.
Having said that, the choices you've offered for implementation are missing the point. The question you need to answer is "What are the behaviors of dogs I'm interested in?" Then describe these with an interface, and program to the interface.
interface Dog {
Breed getBreed();
Set<Dog> getFavoritePlaymates(DayOfWeek dayOfWeek);
void emitBarkingSound(double volume);
Food getFavoriteFood(Instant asOfTime);
}
When you understand the behaviors, implementation decisions become much clearer.
Then a rule of thumb for implementation is to put simple, common behaviors in an abstract base class:
abstract class AbstractDog implements Dog {
private Breed breed;
Dog(Breed breed) { this.breed = breed; }
#Override Breed getBreed() { return breed; }
}
You should be able to test such base classes by creating minimal concrete versions that just throw UnsupportedOperationException for the unimplemented methods and verify the implemented ones. A need for any fancier kind of setup is a code smell: you've put too much into the base.
Implementation hierarchies like this can be helpful for reducing boilerplate, but more than 2 deep is a code smell. If you find yourself needing 3 or more levels, it's very likely you can and should wrap chunks of common behavior from the low-level classes in helper classes that will be easier to test and available for composition throughout the system. For example, rather than offering a protected void emitSound(Mp3Stream sound); method in the base class for inheritors to use, it would be far preferable to create a new class SoundEmitter {} and add a final member with this type in Dog.
Then make concrete classes by filling in the rest of the behavior:
class Poodle extends AbstractDog {
Poodle() { super(Breed.POODLE); }
Set<Dog> getFavoritePlaymates(DayOfWeek dayOfWeek) { ... }
Food getFavoriteFood(Instant asOfTime) { ... }
}
Observe: The need for a behavior - that the dog must be able to return its breed - and our decision to implement the "get breed" behavior in an abstract base class resulted in a stored enum value.
We ended up adopting something closer to your Option 1, but this wasn't an a priori choice. It flowed from thinking about behaviors and the cleanest way to implement them.
Following comments are on the condition where sub-classes do not actually extend the functionality of their super class.
From Oracle doc:
Signals that an I/O exception of some sort has occurred. This class is the general class of exceptions produced by failed or interrupted I/O operations.
It says IOException is a general exception. If we have a cause enum:
enum cause{
FileNotFound, CharacterCoding, ...;
}
We will not be able to throw an IOException if the cause in our custom code is not included in the enum. In another word, it makes IOException more specific instead of general.
Assuming we are not programming a library, and the functionality of class Dog below is specific in our business requirement:
enum DogBreed {
Bulldog, Poodle;
}
class Dog {
DogBreed dogBreed;
public Dog(DogBreed dogBreed) {
this.dogBreed = dogBreed;
}
}
Personally I think it is good to use enum because it simplifies the class structure (less classes).
The first code you cite involves exceptions.
Inheritance is a natural fit for exception types because the language-provided construct to differentiate exceptions of interest in the try-catch statement is through use of the type system. This means we can easily choose to handle just a more specific type (FileNotFound), or the more general type (IOException).
Testing a field's value, to see whether to handle an exception, means stepping out of the standard language construct and writing some boiler plate guard code (e.g. test value(s) and rethrow if not interested).
(Further, exceptions need to be extensible across DLL (compilation) boundaries. When we use enums we may have problems extending the design without modifying the source that introduces (and other that consumes) the enum.)
When it comes to things other than exceptions, today's wisdom encourages composition over inheritance as this tends to result in less complex and more maintainable designs.
Your Option 1 is more of a composition example, whereas your Option 2 is clearly an inheritance example.
If you agree that these classes represent instances instead of blueprints, would you say it is a good practice to create classes that represents instances or is it totally wrong the way I am looking at this and my statement "classes representing instances" is just load of nonsense?
I agree with you, and would not say this represents good practice. These classes as shown are not particularly customizable and don't represent added value.
A class that has offers no overrides, no new state, no new methods, is not particularly differentiated from its base. So there is little merit in declaring such a class, unless we seek to do instance-of tests on it (like the exception handling language construct does under the covers). We can't really tell from this example, which is contrived for the purposes of asking the question, whether there is any added value in these subclasses but it doesn't appear so.
To be clear, though, there are lots of worse example of inheritance, such as when an (pre) occupation like Teacher or Student inherits from Person. This means that a Teacher cannot a be Student at the same time unless we engage in adding even more classes, e.g. TeacherStudent, perhaps using multiple inheritance..
We might call this class explosion, as sometimes we end up needing a matrix of classes because of inappropriate is-a relationships. (Add one new class, and you need a whole new row or column of exploded classes.)
Working with a design that suffers class explosion actually creates more work for clients consuming these abstractions, so it is a loose-loose situation.
Here at issue, is in our trust of natural language because when we say someone is-a Student, this is not, from a logical perspective, the same permanent "is-a"/instance-of relationship (of subclassing), but rather a potentially-temporary role being played that the Person: one of many possible roles a Person might play concurrently at that. In these cases composition is clearly superior to inheritance.
In your scenario, however, the BullDog is unlikely to be able to be anything other than the BullDog, so the permanent is-a relationship of subclassing holds, and while adding little value, at least this hierarchy does not risk class explosion.
Note that the main drawback to with the enum approach is that the enum may not be extensible depending on the language you're using. If you need arbitrary extensibility (e.g. by others and without altering your code), you have the choice of using something extensible but more weakly typed, like strings (typos aren't caught, duplicates aren't caught, etc..), or you can use inheritance, as it offers decent extensibility with stronger typing. Exceptions need this kind of extensibility by others without modification and recompilation of the originals and others since they are used across DLL boundaries.
If you control the enum and can recompile the code as a unit as needed to handle new dog types, then you don't need this extensibility.
Option 1 has to list all known causes at declaration time.
Option 2 can be extended by creating new classes, without touching the original declaration.
This is important when the base/original declaration is done by the framework. If there were 100 known, fixed, reasons for I/O problems, an enum or something similar could make sense, but if new ways to communicate can crop up that should also be I/O exceptions, then a class hierarchy makes more sense. Any class library that you add to your application can extend with more I/O exceptions without touching the original declaration.
This is basically the O in the SOLID, open for extension, closed for modification.
But this is also why, as an example, DayOfWeek type of enumerations exists in many frameworks. It is extremely unlikely that the western world suddenly wakes up one day and decides to go for 14 unique days, or 8, or 6. So having classes for those is probably overkill. These things are more fixed in stone (knock-on-wood).
The two options you present do not actually express what I think you're trying to get at. What you're trying to differentiate between is composition and inheritance.
Composition works like this:
class Poodle {
Legs legs;
Tail tail;
}
class Bulldog {
Legs legs;
Tail tail;
}
Both have a common set of characteristics that we can aggregate to 'compose' a class. We can specialize components where we need to, but can just expect that "Legs" mostly work like other legs.
Java has chosen inheritance instead of composition for IOException and FileNotFoundException.
That is, a FileNotFoundException is a kind of (i.e. extends) IOException and permits handling based on the identity of the superclass only (though you can specify special handling if you choose to).
The arguments for choosing composition over inheritance are well-rehearsed by others and can be easily found by searching for "composition vs. inheritance."

Object-languages misdescribed by UML?

I've read that UML assumes by default that :
a class can inherit several others
an object is an instance of only one class
an object of a given class cannot change to another class
This leads me to the question : as there are 3 hypothesis, there are 2^3 possible combinations. Could you give me languages which would be examples of each of them ?
I mean for me Java is "false-true-true" and C++ is "true-true-true". What about the 6 others ? Or did I misinterpret the assumptions ?
Let's look at the UML 2.5 standard of the OMG, to have a definitive answer:
1.Class inheritance
The UML 2.5 standard clearly defines that a class can have none or several superclasses and, that conversely, a class can be superclass of none or several classes (see section 11.4.2 and 11.8.3.6).
So UML definitively allows multiple inheritance (as in C++ or Python). But you may as well restrict yourself and use only single inheritance and several interface implementations, like in Java and C#. You'd use a realization relationship to show the "inheritance" from an abstract interface (the inheritance arrow is then dotted).
2. Objects and classes
9.8.1: InstanceSpecifications represent instances of Classifiers in a modeled
system. They are often used to model example configurations of
instances.
FYI: the terms used in the standard are a little more general, but an object is an instance, and a class a classifier. This definition is then further refined in the semantcs in chapter 9.8.3 :
The InstanceSpecification may represent: • Classification of the
instance by one or more Classifiers, any of which may be abstract.
So UML allows objects to be an instantiation of several classes. I don't know languages that allow this, but if you do don't hesitate to comment ;-).
3. Changing class of object
I must admit that I can't answer this answer 100%. I don't think so, because, becoming an instance of another class would mean to re-insantiate a class, so it's not corresponding anymore to the definition of an instantiation.
Furthermore (see 9.8.3):
An InstanceSpecification may represent an instance at a point in time
(a snapshot). Changes to the instance may be modeled using multiple
InstanceSpecification, one for each snapshot.
This is somewhat ambiguous: a given object in a given diagram can't change classes. However, you can represent several times the object in different diagrams (snapshot) to show a change.
Conclusions
So your assumption 1 is true, 2 is false, and 3 true or false depending if you're reasoning at diagram or model level.

What does it mean in UML that instance could realize more than 1 classifier?

Does any programming language provide such a thing?
Where could this be used?
For example:
note that somethingStrange is not a class, its an instance (its underlined) and this is an object diagram
Spec (section 7.3.22) says:
An instance specification is depicted using the same notation as its classifier, but in place of the classifier name appears an underlined concatenation of the instance name (if any), a colon (‘:’) and the classifier name or names.
The convention for showing multiple classifiers is to separate their names by commas.
So im stuck with "multiple classifiers".
Any language with extensional rather than intensional typing will allow such constructs.
For example, in RDF two sources could make claims about a web resource which are completely conflicting, or in a 'duck type' language an object could have all the characteristics of two otherwise unrelated types.
Extensional languages classify objects by their properties - if it has prongs it's a fork, if it's got a handle and a bowl it's a spoon, if it has both prongs and a bowl it is both a fork and a spoon.
The difference between such languages and class oriented intensional languages such as C++/Java/C# to which UML is more commonly applied, is that you don't need a spork class to define things which are both spoons and forks - whether things belong to a classifier is defined by whether they meet the requirements of the classifier.
That's multiple inheritance if you're referring to classes (except that you should use solid edges for generalization), nothing wrong with that ;)
Note that an interface is also a classifier, so also the text of your question needs a bit of refinement -- nothing wrong with generalizing more than one interface, after all.
It's is a Dependency.
Dependency is a weaker form of relationship which indicates that one class depends on another because it uses it at some point of time. One class depends on another if the latter is a parameter variable or local variable of a method of the former. This is different from an association, where an attribute of the former is an instance of the latter.
In other words your somethingStance class will use both Cat and Panzer
The below it is just an example of how it might look like
Public class SomethingStrange{
public Cat CatDependency{get;set;}
public Panzer PanzerDependency{get;set;}
}
UML does allow an object to be instance of several different classes (even if they are unrelated) at the same time. The fact that this is not the normal convention and not supported by programming languages is a different issue. UML tries to be as broad as possible even if specific technologies only can implement a subset of it.

UML associations

I'm trying to read UML Class diagrams used to document design patterns. I understand aggregation and composition - and aggregation uses the open diamond and composition uses the filled diamond.
I've read somewhere that a dotted line implies instantiation - i.e. if one class instantiates another then you use a dotted line from the instantiator to the instantiated. First, wouldn't composition use this as well as I thought composition implied ownership?
Second, I've seen lines drawn between classes which are not aggregate or composition - i.e. there's no diamnad at all. Here's an example where they are documenting the observer pattern:
http://www.dofactory.com/Patterns/PatternObserver.aspx
they show a line from subject to observer without any diamond. What's all this about?
thanks
Ray
A UML association is used to convey a relationship between two or more classifiers (e.g. classes). Compositions and aggregations are specialized forms of association.
Associations are often used in class diagrams to indicate that instances of one class can have references to instances of another class. For example, in the diagram to which you link, the association between ConcreteObserver and ConcreteSubject implies that a ConcreteObserver instance can have a reference to a ConcreteSubject instance (note the directionality of the association).
Dotted line implies dependency. There are many different types of dependency, one of them being instantiation. As said before, associations are a way to describe relationship between a classs having a property of another class. When it comes to relationships between classes in classs diagram, it is good to start from most concrete and go to more general. So start with composition, aggregation, association and dependency.