Why should we use bag of visual words (or vlad) instead of storing descriptors? - encoding

I have read a lot about image encoding techniques, e.g. Bag of Visual Words, VLAD or Fisher Vectors.
However, I have a very basic question: we know that we can perform descriptor matching (brute force or by exploiting ANN techniques). My question is: why don't we just use them?
From my knowledge, Bag of Visual Words are made of hundreds of thousands of dimensions per image to have accurate representation. If we consider an image with 1 thousand SIFT descriptors (which is already a considerable number), we have 128 thousands floating numbers, which is usually less than the number of dimensions of BoVW, so it's not for a memory reason (at least if we are not considering large scale problems, then VLAD/FV codes are preferred).
Then why do we use such encoding techniques? Is it for performance reasons?

I had a hard time understanding your question.
Concerning descriptor matching, brute force, ANN matching techniques are used in retrieval systems. Recent matching techniques include KDtree, Hashing, etc.
BoVW is a traditional representation scheme. At one time BOVW combined with Inverted index was the state-of-the-art in information retrieval systems. But the dimension (memory usage per image) of BOVW representation (upto millions) limits the actual number of images that can be indexed in practice.
FV and VLAD are both compact visual representations with high discriminative ability, something which BoVW lacked. VLAD is known to be extremely compact (32Kb per image), very discriminative and efficient in retrieval and classification tasks.
So yes, such encoding techniques are used for performance reasons.
You may check this paper for deeper understanding: Aggregating local descriptors into a compact image
representation.

Related

Choose training and test set for MLP and Hopfield network

I have a question regarding the choice of the training and the test set for a Multilayer Perceptron (MLP) and a Hopfield network.
For example, assume that we got 100 patterns of the digits 0-9 given in a bitmap format. 10 of them are perfect digits while the other 90 are distorted. Which of these patterns will be used for the training set and which for the test set? The goal is to classify the digits.
I suppose for the Hopfield network the perfect digits will be used as the training set, but what about the MLP? One approach I thought of was to take for example 70 of the distorted digits and use them as the training set along with the corresponding perfect digits as their intended targets. Is this approach correct?
Disclaimer: I have not worked with Hopfield Networks before, so I trust you in your statements about it, but it should not be of that great relevance for the answer, anyways.
I am also assuming that you want to classify the digits, which is something you don't explicitly state in your question.
As for a proper split: Aside from the fact that that little training data is generally not a feasible amount to get decent results for a MLP (even for a simple task such as digit classification), it is unlikely that you will be able to "pre-label" your training data in terms of quality in most real-world scenarios. You should therefore always assume that the data you are processing is inherently noisy. A good example for this is also the fact that data augmentation is frequently used to enrich your training corpus. Since data augmentation can consist of such simple changes as
added noise
minor rotations
horizontal/vertical flipping (the latter only makes so much sense for digits, though)
can improve your accuracy, it goes to show that visual quality and quantity for training are two very different things. Of course, it is not per se true that quantity alone will solve your problem (although research indicates that it is at least a good idea to use very much data)
Further, what you judge to be a good representation might be very much different from the network's perspective (although for labeling digits it might be rather easy to tell). A decent strategy is therefore to simply perform a random sampling for your training/test split.
Something I like to do when preprocessing a dataset is, when done splitting, to check whether every class is somewhat evenly represented in the splits, so you won't overfit.
Similarly, I would argue that having clean/high quality images of digits in both your test and training set might make the most sense, since you want to both be able to recognize a high quality number, as well as a sloppily written digit, and then test whether you can actually recognize it (with your test set).

What is the importance of clustering?

During unsupervised learning we do cluster analysis (like K-Means) to bin the data to a number of clusters.
But what is the use of these clustered data in practical scenario.
I think during clustering we are losing information about the data.
Are there some practical examples where clustering could be beneficial?
The information loss can be intentional. Here are three examples:
PCM signal quantification (Lloyd's k-means publication). You know that are certain number (say 10) different signals are transmitted, but with distortion. Quantifying removes the distortions and re-extracts the original 10 different signals. Here, you lose the error and keep the signal.
Color quantization (see Wikipedia). To reduce the number of colors in an image, a quite nice method uses k-means (usually in HSV or Lab space). k is the number of desired output colors. Information loss here is intentional, to better compress the image. k-means attempts to find the least-squared-error approximation of the image with just k colors.
When searching motifs in time series, you can also use quantization such as k-means to transform your data into a symbolic representation. The bag-of-visual-words approach that was the state of the art for image recognition prior to deep learning also used this.
Explorative data mining (clustering - one may argue that above use cases are not data mining / clustering; but quantization). If you have a data set of a million points, which points are you going to investigate? clustering methods try ro split the data into groups that are supposed to be more homogeneous within and more different to another. Thrn you don't have to look at every object, but only at some of each cluster to hopefully learn something about the whole cluster (and your whole data set). Centroid methods such as k-means even can proviee a "prototype" for each cluster, albeit it is a good idea to also lool at other points within the cluster. You may also want to do outlier detection and look at some of the unusual objects. This scenario is somewhere inbetween of sampling representative objects and reducing the data set size to become more manageable. The key difference to above points is that the result is usually not "operationalized" automatically, but because explorative clustering results are too unreliable (and thus require many iterations) need to be analyzed manually.

Best Method to Intersect Huge HyperLogLogs in Redis

The problem is simple: I need to find the optimal strategy to implement accurate HyperLogLog unions based on Redis' representation thereof--this includes handling their sparse/dense representations if the data structure is exported for use elsewhere.
Two Strategies
There are two strategies, one of which seems vastly simpler. I've looked at the actual Redis source and I'm having a bit of trouble (not big in C, myself) figuring out whether it's better from a precision and efficiency perspective to use their built-in structures/routines or develop my own. For what it's worth, I'm willing to sacrifice space and to some degree errors (stdev +-2%) in the pursuit of efficiency with extremely large sets.
1. Inclusion Principle
By far the simplest of the two--essentially I would just use the lossless union (PFMERGE) in combination with this principle to calculate an estimate of the overlap. Tests seem to show this running reliably in many cases, although I'm having trouble getting an accurate handle on in-the-wild efficiency and accuracy (some cases can produce errors of 20-40% which is unacceptable in this use case).
Basically:
aCardinality + bCardinality - intersectionCardinality
or, in the case of multiple sets...
aCardinality + (bCardinality x cCardinality) - intersectionCardinality
seems to work in many cases with good accuracy, but I don't know if I trust it. While Redis has many built-in low-cardinality modifiers designed to circumvent known HLL issues, I don't know if the issue of wild inaccuracy (using inclusion/exclusion) is still present with sets of high disparity in size...
2. Jaccard Index Intersection/MinHash
This way seems more interesting, but a part of me feels like it may computationally overlap with some of Redis' existing optimizations (ie, I'm not implementing my own HLL algorithm from scratch).
With this approach I'd use a random sampling of bins with a MinHash algorithm (I don't think an LSH implementation is worth the trouble). This would be a separate structure, but by using minhash to get the Jaccard index of the sets, you can then effectively multiply the union cardinality by that index for a more accurate count.
Problem is, I'm not very well versed in HLL's and while I'd love to dig into the Google paper I need a viable implementation in short order. Chances are I'm overlooking some basic considerations either of Redis' existing optimizations, or else in the algorithm itself that allows for computationally-cheap intersection estimates with pretty lax confidence bounds.
thus, my question:
How do I most effectively get a computationally-cheap intersection estimate of N huge (billions) sets, using redis, if I'm willing to sacrifice space (and to a small degree, accuracy)?
Read this paper some time back. Will probably answer most of your questions. Inclusion Principle inevitably compounds error margins a large number of sets. Min-Hash approach would be the way to go.
http://tech.adroll.com/media/hllminhash.pdf
There is a third strategy to estimate the intersection size of any two sets given as HyperLogLog sketches: Maximum likelihood estimation.
For more details see the paper available at
http://oertl.github.io/hyperloglog-sketch-estimation-paper/.

Clustering: a training dataset of variable data dimensions

I have a dataset of n data, where each data is represented by a set of extracted features. Generally, the clustering algorithms need that all input data have the same dimensions (the same number of features), that is, the input data X is a n*d matrix of n data points each of which has d features.
In my case, I've previously extracted some features from my data but the number of extracted features for each data is most likely to be different (I mean, I have a dataset X where data points have not the same number of features).
Is there any way to adapt them, in order to cluster them using some common clustering algorithms requiring data to be of the same dimensions.
Thanks
Sounds like the problem you have is that it's a 'sparse' data set. There are generally two options.
Reduce the dimensionality of the input data set using multi-dimensional scaling techniques. For example Sparse SVD (e.g. Lanczos algorithm) or sparse PCA. Then apply traditional clustering on the dense lower dimensional outputs.
Directly apply a sparse clustering algorithm, such as sparse k-mean. Note you can probably find a PDF of this paper if you look hard enough online (try scholar.google.com).
[Updated after problem clarification]
In the problem, a handwritten word is analyzed visually for connected components (lines). For each component, a fixed number of multi-dimensional features is extracted. We need to cluster the words, each of which may have one or more connected components.
Suggested solution:
Classify the connected components first, into 1000(*) unique component classifications. Then classify the words against the classified components they contain (a sparse problem described above).
*Note, the exact number of component classifications you choose doesn't really matter as long as it's high enough as the MDS analysis will reduce them to the essential 'orthogonal' classifications.
There are also clustering algorithms such as DBSCAN that in fact do not care about your data. All this algorithm needs is a distance function. So if you can specify a distance function for your features, then you can use DBSCAN (or OPTICS, which is an extension of DBSCAN, that doesn't need the epsilon parameter).
So the key question here is how you want to compare your features. This doesn't have much to do with clustering, and is highly domain dependant. If your features are e.g. word occurrences, Cosine distance is a good choice (using 0s for non-present features). But if you e.g. have a set of SIFT keypoints extracted from a picture, there is no obvious way to relate the different features with each other efficiently, as there is no order to the features (so one could compare the first keypoint with the first keypoint etc.) A possible approach here is to derive another - uniform - set of features. Typically, bag of words features are used for such a situation. For images, this is also known as visual words. Essentially, you first cluster the sub-features to obtain a limited vocabulary. Then you can assign each of the original objects a "text" composed of these "words" and use a distance function such as cosine distance on them.
I see two options here:
Restrict yourself to those features for which all your data-points have a value.
See if you can generate sensible default values for missing features.
However, if possible, you should probably resample all your data-points, so that they all have values for all features.

Data clustering algorithm

What is the most popular text clustering algorithm which deals with large dimensions and huge dataset and is fast?
I am getting confused after reading so many papers and so many approaches..now just want to know which one is used most, to have a good starting point for writing a clustering application for documents.
To deal with the curse of dimensionality you can try to determine the blind sources (ie topics) that generated your dataset. You could use Principal Component Analysis or Factor Analysis to reduce the dimensionality of your feature set and to compute useful indexes.
PCA is what is used in Latent Semantic Indexing, since SVD can be demonstrated to be PCA : )
Remember that you can lose interpretation when you obtain the principal components of your dataset or its factors, so you maybe wanna go the Non-Negative Matrix Factorization route. (And here is the punch! K-Means is a particular NNMF!) In NNMF the dataset can be explained just by its additive, non-negative components.
There is no one size fits all approach. Hierarchical clustering is an option always. If you want to have distinct groups formed out of the data, you can go with K-means clustering (it is also supposedly computationally less intensive).
The two most popular document clustering approaches, are hierarchical clustering and k-means. k-means is faster as it is linear in the number of documents, as opposed to hierarchical, which is quadratic, but is generally believed to give better results. Each document in the dataset is usually represented as an n-dimensional vector (n is the number of words), with the magnitude of the dimension corresponding to each word equal to its term frequency-inverse document frequency score. The tf-idf score reduces the importance of high-frequency words in similarity calculation. The cosine similarity is often used as a similarity measure.
A paper comparing experimental results between hierarchical and bisecting k-means, a cousin algorithm to k-means, can be found here.
The simplest approaches to dimensionality reduction in document clustering are: a) throw out all rare and highly frequent words (say occuring in less than 1% and more than 60% of documents: this is somewhat arbitrary, you need to try different ranges for each dataset to see impact on results), b) stopping: throw out all words in a stop list of common english words: lists can be found online, and c) stemming, or removing suffixes to leave only word roots. The most common stemmer is a stemmer designed by Martin Porter. Implementations in many languages can be found here. Usually, this will reduce the number of unique words in a dataset to a few hundred or low thousands, and further dimensionality reduction may not be required. Otherwise, techniques like PCA could be used.
I will stick with kmedoids, since you can compute the distance from any point to anypoint at the beggining of the algorithm, You only need to do this one time, and it saves you time, specially if there are many dimensions. This algorithm works by choosing as a center of a cluster the point that is nearer to it, not a centroid calculated in base of the averages of the points belonging to that cluster. Therefore you have all possible distance calculations already done for you in this algorithm.
In the case where you aren't looking for semantic text clustering (I can't tell if this is a requirement or not from your original question), try using Levenshtein distance and building a similarity matrix with it. From this, you can use k-medoids to cluster and subsequently validate your clustering through use of silhouette coefficients. Unfortunately, Levensthein can be quite slow, but there are ways to speed it up through uses of thresholds and other methods.
Another way to deal with the curse of dimensionality would be to find 'contrasting sets,', conjunctions of attribute-value pairs that are more prominent in one group than in the rest. You can then use those contrasting sets as dimensions either in lieu of the original attributes or with a restricted number of attributes.