Dynamic Binding and Macros - macros

Consider the following code:
CL-USER> (defmacro sum (a b)
(+ a b))
SUM
CL-USER> (let ((alpha 3) (beta -1))
(sum alpha beta))
; in: LET ((ALPHA 3) (BETA -1))
; (SUM ALPHA BETA)
;
; caught ERROR:
; during macroexpansion of (SUM ALPHA BETA). Use *BREAK-ON-SIGNALS* to intercept.
;
; Argument X is not a NUMBER: ALPHA
; (LET ((ALPHA 3) (BETA -1))
; (SUM ALPHA BETA))
;
; caught STYLE-WARNING:
; The variable ALPHA is defined but never used.
;
; caught STYLE-WARNING:
; The variable BETA is defined but never used.
;
; compilation unit finished
; caught 1 ERROR condition
; caught 2 STYLE-WARNING conditions
; Evaluation aborted on #<SB-INT:COMPILED-PROGRAM-ERROR {10030E4223}>.
There are basically two reasons (that I could think of), which contribute to the failure of this code:
1. The macro sum is first evaluated upon two variables alpha and beta, which are sent as symbols into the macro. So, the code to be evaluated inside the macro is:
(+ 'alpha 'beta)
Which won't work, because we can't add two symbols.
2. The variables alpha and beta are lexically bound, because of which, the code of the macro can't access the symbolic values of alpha and beta.
Thus, redefining sum:
CL-USER> (defmacro sum (a b)
(+ (symbol-value a) (symbol-value b)))
WARNING: redefining COMMON-LISP-USER::SUM in DEFMACRO
SUM
Here, the macro sum will evaluate the value of the symbols provided to it. It can only do it, if it is in the scope of the symbols. So, in order to do that, we can make alpha and beta dynamically bound.
Furthermore, in order to check if the dynamic binding is working, we can make a function dynamic-checker, which is defined below:
CL-USER> (defun dynamic-checker ()
(+ alpha beta))
; in: DEFUN DYNAMIC-CHECKER
; (+ ALPHA BETA)
;
; caught WARNING:
; undefined variable: ALPHA
;
; caught WARNING:
; undefined variable: BETA
;
; compilation unit finished
; Undefined variables:
; ALPHA BETA
; caught 2 WARNING conditions
DYNAMIC-CHECKER
And, finally we can evaluate this code in the REPL:
CL-USER> (let ((alpha 3) (beta -1))
(declare (special alpha))
(declare (special beta))
(print (dynamic-checker))
(sum alpha beta))
Which gives us the error:
; in: LET ((ALPHA 3) (BETA -1))
; (SUM ALPHA BETA)
;
; caught ERROR:
; during macroexpansion of (SUM ALPHA BETA). Use *BREAK-ON-SIGNALS* to intercept.
;
; The variable ALPHA is unbound.
;
; compilation unit finished
; caught 1 ERROR condition
2 ; Evaluation aborted on #<SB-INT:COMPILED-PROGRAM-ERROR {1003F23AD3}>.
CL-USER>
Note the 2 in the end of the error code. This is returned by the function dynamic-checker, which adds alpha and beta, even though they aren't it's parameters, which proves that the variables alpha and beta can be accessed dynamically by the members of let.
Therefore, the macro sum should've worked now, because both the problems that occurred earlier are resolved.
But this clearly isn't the case, and I'm missing something.
Any help appreciated.

Interpreter and Compiler vs. interactivity
Common Lisp allows both interpreters and compilers. That you can interactively use a read-eval-print-loop does not mean that the implementation uses an interpreter. It could just incrementally compile the code and then invoke the compiled code. A Lisp interpreter runs the code from the Lisp representation. SBCL doesn't use an interpreter by default. It uses a compiler.
Using an Interpreter
LispWorks has an interpreter. Let's use it:
CL-USER 8 > (defun test ()
(let ((alpha 3) (beta -1))
(declare (special alpha))
(declare (special beta))
(print (dynamic-checker))
(sum alpha beta)))
TEST
CL-USER 9 > (test)
2
2
Thus the code works, since the Lisp interpreter executes the forms and when it sees a macro, then it expands it on the go. The bindings are available.
Let's use the LispWorks stepper, which uses the interpreter. :s is the step command.
(step (test))
(TEST) -> :s
(LET ((ALPHA 3) (BETA -1))
(DECLARE (SPECIAL ALPHA))
(DECLARE (SPECIAL BETA))
(PRINT (DYNAMIC-CHECKER))
(SUM ALPHA BETA)) -> :s
3 -> :s
3
-1 -> :s
-1
(PRINT (DYNAMIC-CHECKER)) -> :s
(DYNAMIC-CHECKER) -> :s
(+ ALPHA BETA) -> :s
ALPHA -> :s
3
BETA -> :s
-1
2
2
2 ; <- output
2
(SUM ALPHA BETA) <=> 2 ; <- macro expansion to 2
2 -> :s
2 ; 2 evaluates to itself
2
2
2
Compilation fails
But we can't compile your code:
CL-USER 10 > (compile 'test)
Error: The variable ALPHA is unbound.
1 (continue) Try evaluating ALPHA again.
2 Return the value of :ALPHA instead.
3 Specify a value to use this time instead of evaluating ALPHA.
4 Specify a value to set ALPHA to.
5 (abort) Return to level 0.
6 Return to top loop level 0.
Type :b for backtrace or :c <option number> to proceed.
Type :bug-form "<subject>" for a bug report template or :? for other options.
The compiler tries to expand the macro, but it does not run the code. Since the LET form isn't executed (the compiler only compiles it to something else, but does not execute it) there is no binding for alpha.
Style
Generally it is a good idea to avoid writing macros which need runtime state from the enclosing code. Such macros would only be executable by an interpreter.

As per user jkiiski's comment, I get the feeling you need to understand when the two operations (macro operations and program/function application) are taking place in typically compiled code. Additionally, i wouldn't recommend writing the macros you've defined, but will work through them for the purpose of education.
Lets start by explicitly declaring two symbols to be special, and bind them to some values:
CL-USER> (defvar alpha 6)
6
CL-USER> (defvar beta 5)
5
This not only establishes two variables as special/dynamic, but also gives them bindings to the values 6 and 5 respectively.
More importantly, by doing this we establish the variables and bindings before the examples in your macro or your code will be evaluated.
Now we run your final form and we should get the following:
CL-USER> (let ((alpha 3) (beta -1))
(declare (special alpha))
(declare (special beta))
(print (dynamic-checker))
(sum alpha beta))
2
11
The first value of 2 is printed due to the printing of (dynamic-checker). The value of 11 is being returned because the macro sum is resolving to the value 11, which then effectively takes the place of the form (sum alpha beta) and is returned in the actual evaluation of your (let ...) code.
The important thing to realise is that the macro is being evaluated at compile-time: that is to say, before the final form of (let ...) is compiled and run. Because it is evaluated before your (let ...) form, your let form does not establish the bindings of 3 and -1 to the symbols alpha and beta when the macro is resolving. I've been cheeky and made explicit bindings to the values 6 and 5 before this, and that's what the macro is seeing.
After the macro is successfully resolved, your let form effectively becomes:
(let ((alpha 3) (beta -1))
(declare (special alpha))
(declare (special beta))
(print (dynamic-checker))
11)
And that explains why we now get no errors, what caused the errors in your previous example, and why we got the output from my additions specified above, and we can explicitly see when the macro/let form are being resolved.

Related

How to Explain Lexical vs Dynamic Binding?

I read a relevant post on binding, however still have questions.
Here are the following examples I found. Can someone tell me if the conclusions are correct?
Dynamic Binding of x in (i):
(defun j ()
(let ((x 1))
(i)))
(defun i ()
(+ x x))
> (j)
2
Lexical Binding of x in i2:
(defun i2 (x)
(+ x x))
(defun k ()
(let ((x 1))
(i2 2)))
> (k)
4
No Global Lexical Variables in ANSI CL so Dynamic Binding is performed:
(setq x 3)
(defun z () x)
> (let ((x 4)) (z))
4
Dynamic Binding, which appears to bind to a lexically scoped variable:
(defvar x 1)
(defun f (x) (g 2))
(defun g (y) (+ x y))
> (f 5)
7
Based on the above tests, CL first tries lexical binding. If there is no lexical match in the environment, then CL tries dynamic binding. It appears that any previously lexically scoped variables become available to dynamic binding. Is this correct? If not, what is the behavior?
(defun j ()
(let ((x 1))
(i)))
(defun i ()
(+ x x))
> (j)
2
This is actually undefined behavior in Common Lisp. The exact consequences of using undefined variables (here in function i) is not defined in the standard.
CL-USER 75 > (defun j ()
(let ((x 1))
(i)))
J
CL-USER 76 > (defun i ()
(+ x x))
I
CL-USER 77 > (j)
Error: The variable X is unbound.
1 (continue) Try evaluating X again.
2 Return the value of :X instead.
3 Specify a value to use this time instead of evaluating X.
4 Specify a value to set X to.
5 (abort) Return to top loop level 0.
Type :b for backtrace or :c <option number> to proceed.
Type :bug-form "<subject>" for a bug report template or :? for other options.
CL-USER 78 : 1 >
As you see, the Lisp interpreter (!) complains at runtime.
Now:
(setq x 3)
SETQ sets an undefined variable. That's also not fully defined in the standard. Most compilers will complain:
LispWorks
;;;*** Warning in (TOP-LEVEL-FORM 1): X assumed special in SETQ
; (TOP-LEVEL-FORM 1)
;; Processing Cross Reference Information
;;; Compilation finished with 1 warning, 0 errors, 0 notes.
or SBCL
; in: SETQ X
; (SETQ X 1)
;
; caught WARNING:
; undefined variable: COMMON-LISP-USER::X
;
; compilation unit finished
; Undefined variable:
; X
; caught 1 WARNING condition
(defvar x 1)
(defun f (x) (g 2))
(defun g (y) (+ x y))
> (f 5)
7
Dynamic Binding, which appears to bind to a lexically scoped variable
No, x is globally defined to be special by DEFVAR. Thus f creates a dynamic binding for x and the value of x in the function g is looked up in the dynamic environment.
Basic rules for the developer
never use undefined variables
when using special variables always put * around them, so that it is always visible when using them, that dynamic binding&lookup is being used. This also makes sure that one does NOT declare variables by accident globally as special. One (defvar x 42) and x will from then on always be a special variable using dynamic binding. This is usually not what is wanted and it may lead to hard to debug errors.
In summary: no, CL never 'tries one kind of binding then another': rather it establishes what kind of binding is in effect, at compile time, and refers to that. Further, variable bindings and references are always lexical unless there is a special declaration in effect, in which case they are dynamic. The only time when it is not lexically apparent whether there is a special declaration in effect is for global special declarations, usually performed via defvar / defparameter, which may not be visible (for instance they could be in other source files).
There are two good reasons it decides about binding like this:
firstly it means that a human reading the code can (except possibly in the case of a global special declaration which is not visible) know what sort of binding is in use – getting a surprise about whether a variable reference is to a dynamic or lexical binding of that variable is seldom a pleasant experience;
secondly it means that good compilation is possible – unless the compiler can know what a variable's binding type is, it can never compile good code for references to that variable, and this is particularly the case for lexical bindings with definite extent where variable references can often be compiled entirely away.
An important aside: always use a visually-distinct way of writing variables which have global special declarations. So never say anything like (defvar x ...): the language does not forbid this but it's just catastrophically misleading when reading code, as this is the exact case where a special declaration is often not visible to the person reading the code. Further, use *...* for global specials like the global specials defined by the language and like everyone else does. I often use %...% for nonglobal specials but there is no best practice for this that I know of. It's fine (and there are plenty of examples defined by the language) to use unadorned names for constants since these may not be bound.
The detailed examples and answers below assume:
Common Lisp (not any other Lisp);
that the code quoted is all the code, so there are no additional declarations or anything like that.
Here is an example where there is a global special declaration in effect:
;;; Declare *X* globally special, but establish no top-level binding
;;; for it
;;;
(defvar *x*)
(defun foo ()
;; FOO refers to the dynamic binding of *X*
*x*)
;;; Call FOO with no binding for *X*: this will signal an
;;; UNBOUND-VARIABLE error, which we catch and report
;;;
(handler-case
(foo)
(unbound-variable (u)
(format *error-output* "~&~S unbound in FOO~%"
(cell-error-name u))))
(defun bar (x)
;; X is lexical in BAR
(let ((*x* x))
;; *X* is special, so calling FOO will now be OK
(foo)))
;;; This call will therefore return 3
;;;
(bar 3)
Here is an example where there are nonglobal special declarations.
(defun foo (x)
;; X is lexical
(let ((%y% x))
(declare (special %y%))
;; The binding of %Y% here is special. This means that the
;; compiler can't know if it is referenced so there will be no
;; compiler message even though it is unreferenced in FOO.
(bar)))
(defun bar ()
(let ((%y% 1))
;; There is no special declaration in effect here for %Y%, so this
;; binding of %Y% is lexical. Therefore it is also unused, and
;; tere will likely be a compiler message about this.
(fog)))
(defun fog ()
;; FOG refers to the dynamic binding of %Y%. Therefore there is no
;; compiler message even though there is no apparent binding of it
;; at compile time nor gobal special declaration.
(declare (special %y%))
%y%)
;;; This returns 3
;;;
(foo 3)
Note that in this example it is always lexically apparent what binding should be in effect for %y%: just looking at the functions on their own tells you what you need to know.
Now here are come comments on your sample code fragments.
(defun j ()
(let ((x 1))
(i)))
(defun i ()
(+ x x))
> (j)
<error>
This is illegal in CL: x is not bound in i and so a call to i should signal an error (specifically an unbound-variable error).
(defun i2 (x)
(+ x x))
(defun k ()
(let ((x 1))
(i2 2)))
> (k)
4
This is fine: i2 binds x lexically, so the binding established by k is never used. You will likely get a compiler warning about unused variables in k but this is implementation-dependent of course.
(setq x 3)
(defun z () x)
> (let ((x 4)) (z))
<undefined>
This is undefined behaviour in CL: setq's portable behaviour is to mutate an existing binding but not to create a new bindings. You are trying to use it to do the latter, which is undefined behaviour. Many implementations allow setq to be used like this at top-level and they may either create what is essentially a global lexical, a global special, or do some other thing. While this is often done in practice when interacting with a given implementation's top level, that does not make it defined behaviour in the language: programs should never do this. My own implementation squirts white-hot jets of lead from hidden nozzles in the general direction of the programmer when you do this.
(defvar x 1)
(defun f (x) (g 2))
(defun g (y) (+ x y))
> (f 5)
7
This is legal. Here:
defvar declares x globally special, so all bindings of x will be dynamic, and establishes a top-level binding of x to 1;
in f the binding of its argument, x will therefore be dynamic, not lexical (without the preceding defvar it would be lexical);
in g the free reference to x will be to its dynamic binding (without the preceding defvar it would be a compile-time warning (implementation-dependent) and a run-time error (not implementation-dependent).

How Lisp (Allegro Common Lisp) uses variables in lambda with ' vs #'

I am hoping someone can explain why tests 1-5 work but test 6 does not. I thought that quoting a lambda with ' and using #' in front of a lambda both returned pointers to the function with the only difference being that the #' will compile it first.
(defun test-1 (y)
(mapcar (lambda (x) (expt x 2))
'(1 2 3)))
(defun test-2 (y)
(mapcar (lambda (x) (expt x y))
'(1 2 3)))
(defun test-3 (y)
(mapcar #'(lambda (x) (expt x 2))
'(1 2 3)))
(defun test-4 (y)
(mapcar #'(lambda (x) (expt x y))
'(1 2 3)))
(defun test-5 (y)
(mapcar '(lambda (x) (expt x 2))
'(1 2 3)))
(defun test-6 (y)
(mapcar '(lambda (x) (expt x y))
'(1 2 3)))
I am using the free version of Franz Industries Allegro Common Lisp. The following are the outputs:
(test-1 2) ; --> (1 4 9)
(test-2 2) ; --> (1 4 9)
(test-3 2) ; --> (1 4 9)
(test-4 2) ; --> (1 4 9)
(test-5 2) ; --> (1 4 9)
(test-6 2) ; --> Error: Attempt to take the value of the unbound variable `Y'. [condition type: UNBOUND-VARIABLE]
For a start, you should be aware that your tests 1-4 are conforming Common Lisp, while your tests 5 and 6 are not. I believe Allegro is perfectly well allowed to do what it does for 5 and 6, but what it is doing is outside the standard. The bit of the standard that talks about this is the definition of functions like mapcar, which take function designators as argument, and the definition of a function designator:
function designator n. a designator for a function; that is, an object that denotes a function and that is one of: a symbol (denoting the function named by that symbol in the global environment), or a function (denoting itself). The consequences are undefined if a symbol is used as a function designator but it does not have a global definition as a function, or it has a global definition as a macro or a special form. [...]
From this it is clear that a list like (lambda (...) ...) is not a function designator: it's just a list whose car happens to be lambda. What Allegro is doing is noticing that this list is in fact something that can be turned into a function and doing that.
Well, let's just write a version of mapcar which does what Allegro's does:
(defun mapcar/coercing (maybe-f &rest lists)
(apply #'mapcar (coerce maybe-f 'function) lists))
This just uses coerce which is a function which knows how to turn lists like this into functions, among other things. If its argument is already a function, coerce just returns it.
Now we can write the two tests using this function:
(defun test-5/coercing (y)
(mapcar/coercing '(lambda (x) (expt x 2))
'(1 2 3)))
(defun test-6/coercing (y)
(mapcar/coercing '(lambda (x) (expt x y))
'(1 2 3)))
So, after that preamble, why can't test-6/explicit work? Well the answer is that Common Lisp is (except for for special variables) lexically scoped. Lexical scope is just a fancy way of saying that the bindings (variables) that are available are exactly and only the bindings you can see by looking at the source of the program. (Except, in the case of CL for special bindings, which I'll ignore, since there are none here.)
So, given this, think about test-6/coercing, and in particular the call to mapcar/coercing: in that call, coerce has to turn the list (lambda (x) (expt z y)) into a function. So it does that. But the function it returns doesn't bind y and there is no binding for y visible in it: the function uses y 'free'.
The only way that this could work is if the function that coerce constructs for us were to dynamically look for a binding for y. Well, that's what dynamically-scoped languages do, but CL is not dynamically-scoped.
Perhaps a way of making this even clearer is to realise that we can lift the function creation right out of the function:
(defun test-7 (y f)
(mapcar f '(1 2 3)))
> (test-7 1 (coerce '(lambda (x) (expt x y)) 'function))
It's clear that this can't work in a lexically-scoped language.
So, then, how do tests 1-4 work?
Well, firstly there are only actually two tests here. In CL, lambda is a macro and (lambda (...) ...) is entirely equivalent to (function (lambda (...) ...)). And of course #'(lambda (...) ...) is also the same as (function (lambda (...) ...)): it's just a read-macro for it.
And (function ...) is a magic thing (a special form) which says 'this is a function'. The important thing about function is that it's not a function: it's a deeply magic thing which tells the evaluator (or the compiler) that its argument is the description of a function in the current lexical context, so, for instance in
(let ((x 1))
(function (lambda (y) (+ x y))))
The x referred to by the function this creates is the x bound by let. So in your tests 2 and 4 (which are the same):
(defun test-4 (y)
(mapcar (function (lambda (x) (expt x y)))
'(1 2 3)))
The binding of y which the function created refers to is the binding of y which is lexically visible, which is the argument of test-4 itself.
Let's add a y parameter to avoid closing over variables and see what kind of values we are manipulating:
USER> (type-of #'(lambda (x y) (expt x y)))
FUNCTION
USER> (type-of (lambda (x y) (expt x y)))
FUNCTION
USER> (type-of '(lambda (x y) (expt x y)))
CONS
As you can see, the two first lambda-like forms are evaluated as functions, while the third is evaluated as a cons-cell. As far as Lisp is concerned, the third argument is just a tree of symbols with no meaning.
Reader macros
I thought that quoting a lambda with ' and using #' in front of a lambda both returned pointers to the function with the only difference being that the #' will compile it first.
Let's go back to the definitions, ' and #' are reader macros, respectively Single-Quote and Sharpsign Single-Quote. They are found in front of other forms, for example 'f is read as (quote f) and #'f is read as (function f). At read-time, f and the resulting forms are just unevaluated data.
We will see below how both special operators are interpreted, but what matters really is the lexical scope, so let's open a parenthesis.
Lexical environment
Lexical environments are the set of bindings in effect at some point of your code. When you evaluate a let or an flet it enriches the current environment with new bindings. When you call EVAL on an expression, you start evaluating from a null lexical environment, even if the call to eval itself is in a non-null environment.
Here x is just unbound during eval:
(let ((x 3)) (eval '(list x))) ;; ERROR
Here we build a let to be evaluated by eval:
(eval '(let ((x 3)) (list x)))
=> (3)
That's all for the crash course on lexical environments.
Special operators
FUNCTION
Special operator FUNCTION takes an argument that is either the name of a function (symbol or setf), or a lambda expression; in particular:
The value of function is the functional value of name in the current lexical environment.
Here the lambda expression is evaluated in the current lexical environment, which means it can refer to variable outside the lambda expression. That's the definition of closures, they capture the surrounding bindings.
NB. you do not need to prefix lambda with #', because there is a macro named (lambda ...) that expands into (function (lambda ...)). It looks like this could expand recursively forever, but this is not the case: at first the macro is expanded so that (lambda ...) becomes (function (lambda ...)), then the special operator function knows how to evaluate the lambda expression itself.
This means that (lambda ...) and #'(lambda ...) are equivalent. Note in particular that there is nothing about whether one form is compiled or not at this point, the compiler will see the same expression after macroexpansion.
QUOTE
Special operator QUOTE evaluates (quote f) as f, where f itself is unevaluated. In test-5 and test-6, there is no function, just an unevaluated structured expression that can be interpreted as code.
Type coercion
Now, certain functions like MAPCAR are used to apply functions. Notice how the specification says that the function parameter is a function designator:
function --- a designator for a function that must take as many arguments as there are lists.
A designator for a type is not necessarily a value of that type, but can be a value that can be coerced to that type. Sometimes a user wants to specify a pathname, and enters a string, but a string is not a value of type pathname: the system has to converts the string into a pathname.
Common Lisp defines a COERCE function with rules regarding how values can be converted to other values. In you case, mapcar first does (coerce (lambda ...) 'function). This is defined as follows:
If the result-type is function, and object is a lambda expression, then the result is a closure of object in the null lexical environment.
The value is thus evaluated in a null lexical environment, so it does not have access to the surrounding bindings; y is a free variable in your lambda expression, and since it is evaluated in a null environment, it is unbound. That's why test-5 pass but test-6 fails.
Name resolution, compilers and late binding
There is a difference whether you write #'f or 'f when referring to a function f where f is a symbol: in the first case, the expression evaluated to an object of type function, and in the second case, you only evaluate a symbol.
Name resolution for this function can change depending and how the compiler works. With a symbol as a function designator, the function does not even need to be defined, the name is resolved when the symbols has to be coerced as a function.
When you write #'f, some compilers may remove one level of indirection and directly make your code jump to the code associated with the function, without having to resolve the name at runtime.
However, this also means that with such compilers (e.g. SBCL), you need to recompile some call sites on function redefinition, as-if the function was declared inline, otherwise some old code will still reference the previous definition of #'f. This is something that is not necessarily important to consider at the beginning, but it can be a source of confusion to keep in mind when you are live coding.

Mutability of core functions in Racket

I came across a rather unexpected behavior today, and it utterly contradicted what (I thought) I knew about mutability in Racket.
#lang racket
(define num 8)
;(define num 9)
Uncommenting the second line gives back the error "module: duplicate definition for identifier in: num", which is fine and expected. After all, define is supposed to treat already defined values as immutable.
However, this makes no sense to me:
#lang racket
(define num 8)
num
(define define 1)
(+ define define)
It returns 8 and 2, but...
define is not set!, and should not allow the redefinition of something already defined, such as define itself.
define is a core language feature, and is clearly already defined, or I should not be able to use num at all.
What gives? Why is define, which is used to create immutable values, not immutable to itself? What is happening here?
(define define 1)
This example shows shadowing, which is different from mutation.
Shadowing allocates new locations in memory. It does not mutate existing ones.
Concretely, the new define shadows the define from Racket.
All languages with a notation of local scope allow shadowing, eg:
> (define x 10)
> (define (f x) ; x shadowed in function f
(displayln x)
(set! x 2) ; (local) x mutated
(displayln x))
> (f 1)
1
2
; local x is out of scope now
> (displayln x) ; original x unmutated
10
For the other example,
(define num 8)
;(define num 9)
this demonstrates that you cant shadow something within the same scope, which is also standard in other languages, eg:
> (define (g x x) x) ; cant have two parameters named x
When a top-level definition binds an identifier that originates from a macro expansion, the definition captures only uses of the identifier that are generated by the same expansion due to the fresh scope that is generated for the expansion.
In other words, the transformers (macros) that are required from other modules can be re-defined because they're expanded out by the macro expander (so the issue is not quite about mutability) Moreover, since racket is all about extensibility, there are no reserved keywords and additional functionality can be added to the current define through a macro (or a function) - that's why it can be redefined.
define is defined as macro of this form - see here.
#lang racket
(module foo1 racket
(provide foo1)
(define-syntaxes (foo1)
(let ([trans (lambda (syntax-object)
(syntax-case syntax-object ()
[(_) #'1]))])
(values trans))))
; ---
(require 'foo1)
(foo1)
; => 1
(define foo1 9)
(+ foo1 foo1)
; => 18

Is evaluating of constructed evaluation equal to macro?

I want to know if these two definitions of nth are equal:
I. is defined as macro:
(defmacro -nth (n lst)
(defun f (n1 lst1)
(cond ((eql n1 0) lst1)
(t `(cdr ,(f (- n1 1) lst1)))))
`(car ,(f n lst)))
II. is defined as a bunch of functions:
(defun f (n lst)
(cond ((eql n 0) lst)
(t `(cdr ,(f (- n 1) lst)))))
(defun f1 (n lst)
`(car ,(f n `',lst)))
(defun --nth (n lst)
(eval (f1 n lst)))
Am i get the right idea? Is macro definition is evaluating of expression, constructed in its body?
OK, let start from the beginning.
Macro is used to create new forms that usually depend on macro's input. Before code is complied or evaluated, macro has to be expanded. Expansion of a macro is a process that takes place before evaluation of form where it is used. Result of such expansion is usually a lisp form.
So inside a macro here are a several levels of code.
Not quoted code will be evaluated during macroexpansion (not at run-time!), in your example you define function f when macro is expanded (for what?);
Next here is quoted (with usual quote or backquote or even nested backquotes) code that will become part of macroexpansion result (in its literal form); you can control what part of code will be evaluated during macroexpansion and what will stay intact (quoted, partially or completely). This allows one to construct anything before it will be executed.
Another feature of macro is that it does not evaluate its parameters before expansion, while function does. To give you picture of what is a macro, see this (just first thing that came to mind):
(defmacro aif (test then &optional else)
`(let ((it ,test))
(if it ,then ,else)))
You can use it like this:
CL-USER> (defparameter *x* '((a . 1) (b . 2) (c . 3) (d . 4)))
*X*
CL-USER> (aif (find 'c *x* :key #'car) (1+ (cdr it)) 0)
4
This macro creates useful lexical binding, capturing variable it. After checking of a condition, you don't have to recalculate result, it's accessible in forms 'then' and 'else'. It's impossible to do with just a function, it has introduced new control construction in language. But macro is not just about creating lexical environments.
Macro is a powerful tool. It's impossible to fully describe what you can do with it, because you can do everything. But nth is not something you need a macro for. To construct a clone of nth you can try to write a recursive function.
It's important to note that LISP macro is most powerful thing in the programming world and LISP is the only language that has this power ;-)
To inspire you, I would recommend this article: http://www.paulgraham.com/avg.html
To master macro, begin with something like this:
http://www.gigamonkeys.com/book/macros-defining-your-own.html
Then may be Paul Graham's "On Lisp", then "Let Over Lambda".
There is no need for either a macro nor eval to make abstractions to get the nth element of a list. Your macro -nth doesn't even work unless the index is literal number. try this:
(defparameter test-list '(9 8 7 6 5 4 3 2 1 0))
(defparameter index 3)
(nth index test-list) ; ==> 6 (this is the LISP provided nth)
(-nth index test-list) ; ==> ERROR: index is not a number
A typical recursive solution of nth:
(defun nth2 (index list)
(if (<= index 0)
(car list)
(nth2 (1- index) (cdr list))))
(nth2 index test-list) ; ==> 6
A typical loop version
(defun nth3 (index list)
(loop :for e :in list
:for i :from index :downto 0
:when (= i 0) :return e))
(nth3 index test-list) ; ==> 6
Usually a macro is something you use when you see your are repeating yourself too much and there is no way to abstract your code further with functions. You may make a macro that saves you the time to write boilerplate code. Of course there is a trade off of not being standard code so you usually write the macro after a couple of times have written the boilerplate.
eval should never be used unless you really have to. Usually you can get by with funcall and apply. eval works only in the global scope so you loose closure variables.

Macro calling a function works in interpreter, fails in compiler (SBCL + CMUCL)

As suggested in a macro-related question I recently posted to SO, I coded a macro called "fast" via a call to a function (here is the standalone code in pastebin):
(defun main ()
(progn
(format t "~A~%" (+ 1 2 (* 3 4) (+ 5 (- 8 6))))
(format t "~A~%" (fast (+ 1 2 (* 3 4) (+ 5 (- 8 6)))))))
This works in the REPL, under both SBCL and CMUCL:
$ sbcl
This is SBCL 1.0.52, an implementation of ANSI Common Lisp.
...
* (load "bug.cl")
22
22
$
Unfortunately, however, the code no longer compiles:
$ sbcl
This is SBCL 1.0.52, an implementation of ANSI Common Lisp.
...
* (compile-file "bug.cl")
...
; during macroexpansion of (FAST (+ 1 2 ...)). Use *BREAK-ON-SIGNALS* to
; intercept:
;
; The function COMMON-LISP-USER::CLONE is undefined.
So it seems that by having my macro "fast" call functions ("clone","operation-p") at compile-time, I trigger issues in Lisp compilers (verified in both CMUCL and SBCL).
Any ideas on what I am doing wrong and/or how to fix this?
Some remarks about your code.
multiple tests of an object for equality can be replaced by MEMBER
backquote with a following comma does nothing. You can just remove that.
you can ensure that your functions are available for a macro by a) moving these functions to an additional file and compile/load that before use of the macro, by b) using EVAL-WHENto inform the compiler to evaluate the definition of the functions or by c) adding the functions to the macro as local functions
Example:
(defmacro fast (&rest sexpr)
(labels ((operation-p (x)
(member x '(+ - * /)))
(clone (sexpr)
(if (consp sexpr)
(destructuring-bind (head . tail) sexpr
(if (operation-p head)
`(the fixnum (,head ,#(clone tail)))
(cons (clone head) (clone tail))))
sexpr)))
(car (clone sexpr))))
Note that this and your version of FAST are not complete code walkers. They recognize only simple function calls (and not the other Lisp constructs like LAMBDA, LET, FLET, LABELS, etc.).
Never mind, I figured it out: I had to move the functions invoked by the macro (and therefore required during compilation) in a separate file, "compile-file" it first, "load" it, then "compile-file" the one with the macro.
Macro-expansion tie happens (typically) during compile time.
That means that any functions used during the macro expansion (note, not necessarily in the macro-expansion, the return value as it were) must be defined when the macro is encountered during compilation.