Postgres using unperformant plan when rerun - postgresql

I'm importing a non circular graph and flattening the ancestors to an array per code. This works fine (for a bit): ~45s for 400k codes over ~900k edges.
However, after the first successful execution Postgres decides to stop using the Nested Loop and the update query performance drops drastically: ~2s per code.
I can force the issue by putting a vacuum right before the update but I am curious why the unoptimization is happening.
DROP TABLE IF EXISTS tmp_anc;
DROP TABLE IF EXISTS tmp_rel;
DROP TABLE IF EXISTS tmp_edges;
DROP TABLE IF EXISTS tmp_codes;
CREATE TABLE tmp_rel (
from_id BIGINT,
to_id BIGINT,
);
COPY tmp_rel FROM 'rel.txt' WITH DELIMITER E'\t' CSV HEADER;
CREATE TABLE tmp_edges(
start_node BIGINT,
end_node BIGINT
);
INSERT INTO tmp_edges(start_node, end_node)
SELECT from_id AS start_node, to_id AS end_node
FROM tmp_rel;
CREATE INDEX tmp_edges_end ON tmp_edges (end_node);
CREATE TABLE tmp_codes (
id BIGINT,
active SMALLINT,
);
COPY tmp_codes FROM 'codes.txt' WITH DELIMITER E'\t' CSV HEADER;
CREATE TABLE tmp_anc(
code BIGINT,
ancestors BIGINT[]
);
INSERT INTO tmp_anc
SELECT DISTINCT(id)
FROM tmp_codes
WHERE active = 1;
CREATE INDEX tmp_anc_codes ON tmp_anc_codes (code);
VACUUM; -- Need this for the update to execute optimally
UPDATE tmp_anc sa SET ancestors = (
WITH RECURSIVE ancestors(code) AS (
SELECT start_node FROM tmp_edges WHERE end_node = sa.code
UNION
SELECT se.start_node
FROM tmp_edges se, ancestors a
WHERE se.end_node = a.code
)
SELECT array_agg(code) FROM ancestors
);
Table stats:
tmp_rel 507 MB 0 bytes
tmp_edges 74 MB 37 MB
tmp_codes 32 MB 0 bytes
tmp_anc 22 MB 8544 kB
Explains:
Without VACUUM before UPDATE:
Update on tmp_anc sa (cost=10000000000.00..11081583053.74 rows=10 width=46) (actual time=38294.005..38294.005 rows=0 loops=1)
-> Seq Scan on tmp_anc sa (cost=10000000000.00..11081583053.74 rows=10 width=46) (actual time=3300.974..38292.613 rows=10 loops=1)
SubPlan 2
-> Aggregate (cost=108158305.25..108158305.26 rows=1 width=32) (actual time=3829.253..3829.253 rows=1 loops=10)
CTE ancestors
-> Recursive Union (cost=81.97..66015893.05 rows=1872996098 width=8) (actual time=0.037..3827.917 rows=45 loops=10)
-> Bitmap Heap Scan on tmp_edges (cost=81.97..4913.18 rows=4328 width=8) (actual time=0.022..0.022 rows=2 loops=10)
Recheck Cond: (end_node = sa.code)
Heap Blocks: exact=12
-> Bitmap Index Scan on tmp_edges_end (cost=0.00..80.89 rows=4328 width=0) (actual time=0.014..0.014 rows=2 loops=10)
Index Cond: (end_node = sa.code)
-> Merge Join (cost=4198.89..2855105.79 rows=187299177 width=8) (actual time=163.746..425.295 rows=10 loops=90)
Merge Cond: (a.code = se.end_node)
-> Sort (cost=4198.47..4306.67 rows=43280 width=8) (actual time=0.012..0.016 rows=5 loops=90)
Sort Key: a.code
Sort Method: quicksort Memory: 25kB
-> WorkTable Scan on ancestors a (cost=0.00..865.60 rows=43280 width=8) (actual time=0.000..0.001 rows=5 loops=90)
-> Materialize (cost=0.42..43367.08 rows=865523 width=16) (actual time=0.010..337.592 rows=537171 loops=90)
-> Index Scan using tmp_edges_end on edges se (cost=0.42..41203.27 rows=865523 width=16) (actual time=0.009..247.547 rows=537171 loops=90)
-> CTE Scan on ancestors (cost=0.00..37459921.96 rows=1872996098 width=8) (actual time=1.227..3829.159 rows=45 loops=10)
With VACUUM before UPDATE:
Update on tmp_anc sa (cost=0.00..2949980136.43 rows=387059 width=14) (actual time=74701.329..74701.329 rows=0 loops=1)
-> Seq Scan on tmp_anc sa (cost=0.00..2949980136.43 rows=387059 width=14) (actual time=0.336..70324.848 rows=387059 loops=1)
SubPlan 2
-> Aggregate (cost=7621.50..7621.51 rows=1 width=8) (actual time=0.180..0.180 rows=1 loops=387059)
CTE ancestors
-> Recursive Union (cost=0.42..7583.83 rows=1674 width=8) (actual time=0.005..0.162 rows=32 loops=387059)
-> Index Scan using tmp_edges_end on tmp_edges (cost=0.42..18.93 rows=4 width=8) (actual time=0.004..0.005 rows=2 loops=387059)
Index Cond: (end_node = sa.code)
-> Nested Loop (cost=0.42..753.14 rows=167 width=8) (actual time=0.003..0.019 rows=10 loops=2700448)
-> WorkTable Scan on ancestors a (cost=0.00..0.80 rows=40 width=8) (actual time=0.000..0.001 rows=5 loops=2700448)
-> Index Scan using tmp_edges_end on tmp_edges se (cost=0.42..18.77 rows=4 width=16) (actual time=0.003..0.003 rows=2 loops=12559395)
Index Cond: (end_node = a.code)
-> CTE Scan on ancestors (cost=0.00..33.48 rows=1674 width=8) (actual time=0.007..0.173 rows=32 loops=387059)

The first execution plan has really bad estimates (Bitmap Index Scan on tmp_edges_end estimates 4328 instead of 2 rows), while the second execution has good estimates and thus chooses a good plan.
So something between the two executions you quote above must have changed the estimates.
Moreover, you say that the first execution of the UPDATE (for which we have no EXPLAIN (ANALYZE) output) was fast.
The only good explanation for the initial performance drop is that it takes the autovacuum daemon some time to collect statistics for the new tables. This normally improves query performance, but of course it can also work the other way around.
Also, a VACUUM usually doesn't fix performance issues. Could it be that you used VACUUM (ANALYZE)?
It would be interesting to know how things are when you collect statistics before your initial UPDATE:
ANALYZE tmp_edges;
When I read your query more closely, however, I wonder why you use a correlated subquery for that. Maybe it would be faster to do something like:
UPDATE tmp_anc sa
SET ancestors = a.codes
FROM (WITH RECURSIVE ancestors(code, start_node) AS
(SELECT tmp_anc.code, tmp_edges.start_node
FROM tmp_edges
JOIN tmp_anc ON tmp_edges.end_node = tmp_anc.code
UNION
SELECT a.code, se.start_node
FROM tmp_edges se
JOIN ancestors a ON se.end_node = a.code
)
SELECT code,
array_agg(start_node) AS codes
FROM ancestors
GROUP BY (code)
) a
WHERE sa.code = a.code;
(This is untested, so there may be mistakes.)

Related

Postgres optimization failing to filter window function partitions early

In some cases, PostgreSQL does not filter out window function partitions until they are calculated, while in a very similar scenario PostgreSQL filters row before performing window function calculation.
Tables used for minimal STR - log is the main data table, each row contains either increment or absolute value. Absolute value resets the current counter with a new base value. Window functions need to process all logs for a given account_id to calculate the correct running total. View uses a subquery to ensure that underlying log rows are not filtered by ts, otherwise, this would break the window function.
CREATE TABLE account(
id serial,
name VARCHAR(100)
);
CREATE TABLE log(
id serial,
absolute int,
incremental int,
account_id int,
ts timestamp,
PRIMARY KEY(id),
CONSTRAINT fk_account
FOREIGN KEY(account_id)
REFERENCES account(id)
);
CREATE FUNCTION get_running_total_func(
aggregated_total int,
absolute int,
incremental int
) RETURNS int
LANGUAGE sql IMMUTABLE CALLED ON NULL INPUT AS
$$
SELECT
CASE
WHEN absolute IS NOT NULL THEN absolute
ELSE COALESCE(aggregated_total, 0) + incremental
END
$$;
CREATE AGGREGATE get_running_total(integer, integer) (
sfunc = get_running_total_func,
stype = integer
);
Slow view:
CREATE VIEW test_view
(
log_id,
running_value,
account_id,
ts
)
AS
SELECT log_running.* FROM
(SELECT
log.id,
get_running_total(
log.absolute,
log.incremental
)
OVER(
PARTITION BY log.account_id
ORDER BY log.ts RANGE UNBOUNDED PRECEDING
),
account.id,
ts
FROM log log JOIN account account ON log.account_id=account.id
) AS log_running;
CREATE VIEW
postgres=# EXPLAIN ANALYZE SELECT * FROM test_view WHERE account_id=1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------
Subquery Scan on log_running (cost=12734.02..15981.48 rows=1 width=20) (actual time=7510.851..16122.404 rows=20 loops=1)
Filter: (log_running.id_1 = 1)
Rows Removed by Filter: 99902
-> WindowAgg (cost=12734.02..14732.46 rows=99922 width=32) (actual time=7510.830..14438.783 rows=99922 loops=1)
-> Sort (cost=12734.02..12983.82 rows=99922 width=28) (actual time=7510.628..9312.399 rows=99922 loops=1)
Sort Key: log.account_id, log.ts
Sort Method: external merge Disk: 3328kB
-> Hash Join (cost=143.50..2042.24 rows=99922 width=28) (actual time=169.941..5431.650 rows=99922 loops=1)
Hash Cond: (log.account_id = account.id)
-> Seq Scan on log (cost=0.00..1636.22 rows=99922 width=24) (actual time=0.063..1697.802 rows=99922 loops=1)
-> Hash (cost=81.00..81.00 rows=5000 width=4) (actual time=169.837..169.865 rows=5000 loops=1)
Buckets: 8192 Batches: 1 Memory Usage: 240kB
-> Seq Scan on account (cost=0.00..81.00 rows=5000 width=4) (actual time=0.017..84.639 rows=5000 loops=1)
Planning Time: 0.199 ms
Execution Time: 16127.275 ms
(15 rows)
Fast view - only change is account.id -> log.account_id (!):
CREATE VIEW test_view
(
log_id,
running_value,
account_id,
ts
)
AS
SELECT log_running.* FROM
(SELECT
log.id,
get_running_total(
log.absolute,
log.incremental
)
OVER(
PARTITION BY log.account_id
ORDER BY log.ts RANGE UNBOUNDED PRECEDING
),
log.account_id,
ts
FROM log log JOIN account account ON log.account_id=account.id
) AS log_running;
CREATE VIEW
postgres=# EXPLAIN ANALYZE SELECT * FROM test_view WHERE account_id=1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------------------
Subquery Scan on log_running (cost=1894.96..1895.56 rows=20 width=20) (actual time=34.718..45.958 rows=20 loops=1)
-> WindowAgg (cost=1894.96..1895.36 rows=20 width=28) (actual time=34.691..45.307 rows=20 loops=1)
-> Sort (cost=1894.96..1895.01 rows=20 width=24) (actual time=34.367..35.925 rows=20 loops=1)
Sort Key: log.ts
Sort Method: quicksort Memory: 26kB
-> Nested Loop (cost=0.28..1894.53 rows=20 width=24) (actual time=0.542..34.066 rows=20 loops=1)
-> Index Only Scan using account_pkey on account (cost=0.28..8.30 rows=1 width=4) (actual time=0.025..0.054 rows=1 loops=1)
Index Cond: (id = 1)
Heap Fetches: 1
-> Seq Scan on log (cost=0.00..1886.03 rows=20 width=24) (actual time=0.195..32.937 rows=20 loops=1)
Filter: (account_id = 1)
Rows Removed by Filter: 99902
Planning Time: 0.297 ms
Execution Time: 47.300 ms
(14 rows)
Is it a bug in PostgreSQL implementation? It seems that this change in view definition shouldn't affect performance at all, PostgreSQL should be able to filter data before applying window function for all data set.

Can PostgreSQL 12 do partition pruning at execution time with subquery returning a list?

I'm trying to take advantages of partitioning in one case:
I have table "events" which partitioned by list by field "dt_pk" which is foreign key to table "dates".
-- Schema
drop schema if exists test cascade;
create schema test;
-- Tables
create table if not exists test.dates (
id bigint primary key,
dt date not null
);
create sequence test.seq_events_id;
create table if not exists test.events
(
id bigint not null,
dt_pk bigint not null,
content_int bigint,
foreign key (dt_pk) references test.dates(id) on delete cascade,
primary key (dt_pk, id)
)
partition by list (dt_pk);
-- Partitions
create table test.events_1 partition of test.events for values in (1);
create table test.events_2 partition of test.events for values in (2);
create table test.events_3 partition of test.events for values in (3);
-- Fill tables
insert into test.dates (id, dt)
select id, dt
from (
select 1 id, '2020-01-01'::date as dt
union all
select 2 id, '2020-01-02'::date as dt
union all
select 3 id, '2020-01-03'::date as dt
) t;
do $$
declare
dts record;
begin
for dts in (
select id
from test.dates
) loop
for k in 1..10000 loop
insert into test.events (id, dt_pk, content_int)
values (nextval('test.seq_events_id'), dts.id, random_between(1, 1000000));
end loop;
commit;
end loop;
end;
$$;
vacuum analyze test.dates, test.events;
I want to run select like this:
select *
from test.events e
join test.dates d on e.dt_pk = d.id
where d.dt between '2020-01-02'::date and '2020-01-03'::date;
But in this case partition pruning doesn't work. It's clear, I don't have constant for partition key. But from documentation I know that there is partition pruning at execution time, which works with value obtained from a subquery:
Partition pruning can be performed not only during the planning of a
given query, but also during its execution. This is useful as it can
allow more partitions to be pruned when clauses contain expressions
whose values are not known at query planning time, for example,
parameters defined in a PREPARE statement, using a value obtained from
a subquery, or using a parameterized value on the inner side of a
nested loop join.
So I rewrite my query like this and I expected partitionin pruning:
select *
from test.events e
where e.dt_pk in (
select d.id
from test.dates d
where d.dt between '2020-01-02'::date and '2020-01-03'::date
);
But explain for this select says:
Hash Join (cost=1.07..833.07 rows=20000 width=24) (actual time=3.581..15.989 rows=20000 loops=1)
Hash Cond: (e.dt_pk = d.id)
-> Append (cost=0.00..642.00 rows=30000 width=24) (actual time=0.005..6.361 rows=30000 loops=1)
-> Seq Scan on events_1 e (cost=0.00..164.00 rows=10000 width=24) (actual time=0.005..1.104 rows=10000 loops=1)
-> Seq Scan on events_2 e_1 (cost=0.00..164.00 rows=10000 width=24) (actual time=0.005..1.127 rows=10000 loops=1)
-> Seq Scan on events_3 e_2 (cost=0.00..164.00 rows=10000 width=24) (actual time=0.008..1.097 rows=10000 loops=1)
-> Hash (cost=1.04..1.04 rows=2 width=8) (actual time=0.006..0.006 rows=2 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Seq Scan on dates d (cost=0.00..1.04 rows=2 width=8) (actual time=0.004..0.004 rows=2 loops=1)
Filter: ((dt >= '2020-01-02'::date) AND (dt <= '2020-01-03'::date))
Rows Removed by Filter: 1
Planning Time: 0.206 ms
Execution Time: 17.237 ms
So, we read all partitions. I even tried to the planner to use nested loop join, because I read in documentation "parameterized value on the inner side of a nested loop join", but it didn't work:
set enable_hashjoin to off;
set enable_mergejoin to off;
And again:
Nested Loop (cost=0.00..1443.05 rows=20000 width=24) (actual time=9.160..25.252 rows=20000 loops=1)
Join Filter: (e.dt_pk = d.id)
Rows Removed by Join Filter: 30000
-> Append (cost=0.00..642.00 rows=30000 width=24) (actual time=0.008..6.280 rows=30000 loops=1)
-> Seq Scan on events_1 e (cost=0.00..164.00 rows=10000 width=24) (actual time=0.008..1.105 rows=10000 loops=1)
-> Seq Scan on events_2 e_1 (cost=0.00..164.00 rows=10000 width=24) (actual time=0.008..1.047 rows=10000 loops=1)
-> Seq Scan on events_3 e_2 (cost=0.00..164.00 rows=10000 width=24) (actual time=0.007..1.082 rows=10000 loops=1)
-> Materialize (cost=0.00..1.05 rows=2 width=8) (actual time=0.000..0.000 rows=2 loops=30000)
-> Seq Scan on dates d (cost=0.00..1.04 rows=2 width=8) (actual time=0.004..0.004 rows=2 loops=1)
Filter: ((dt >= '2020-01-02'::date) AND (dt <= '2020-01-03'::date))
Rows Removed by Filter: 1
Planning Time: 0.202 ms
Execution Time: 26.516 ms
Then I noticed that in every example of "partition pruning at execution time" I see only = condition, not in.
And it really works that way:
explain (analyze) select * from test.events e where e.dt_pk = (select id from test.dates where id = 2);
Append (cost=1.04..718.04 rows=30000 width=24) (actual time=0.014..3.018 rows=10000 loops=1)
InitPlan 1 (returns $0)
-> Seq Scan on dates (cost=0.00..1.04 rows=1 width=8) (actual time=0.007..0.008 rows=1 loops=1)
Filter: (id = 2)
Rows Removed by Filter: 2
-> Seq Scan on events_1 e (cost=0.00..189.00 rows=10000 width=24) (never executed)
Filter: (dt_pk = $0)
-> Seq Scan on events_2 e_1 (cost=0.00..189.00 rows=10000 width=24) (actual time=0.004..2.009 rows=10000 loops=1)
Filter: (dt_pk = $0)
-> Seq Scan on events_3 e_2 (cost=0.00..189.00 rows=10000 width=24) (never executed)
Filter: (dt_pk = $0)
Planning Time: 0.135 ms
Execution Time: 3.639 ms
And here is my final question: does partition pruning at execution time work only with subquery returning one item, or there is a way to get advantages of partition pruning with subquery returning a list?
And why doesn't it work with nested loop join, did I understand something wrong in words:
This includes values from subqueries and values from execution-time
parameters such as those from parameterized nested loop joins.
Or "parameterized nested loop joins" is something different from regular nested loop joins?
There is no partition pruning in your nested loop join because the partitioned table is on the outer side, which is always scanned completely. The inner side is scanned with the join key from the outer side as parameter (hence parameterized scan), so if the partitioned table were on the inner side of the nested loop join, partition pruning could happen.
Partition pruning with IN lists can take place if the list vales are known at plan time:
EXPLAIN (COSTS OFF)
SELECT * FROM test.events WHERE dt_pk IN (1, 2);
QUERY PLAN
---------------------------------------------------
Append
-> Seq Scan on events_1
Filter: (dt_pk = ANY ('{1,2}'::bigint[]))
-> Seq Scan on events_2
Filter: (dt_pk = ANY ('{1,2}'::bigint[]))
(5 rows)
But no attempts are made to flatten a subquery, and PostgreSQL doesn't use partition pruning, even if you force the partitioned table to be on the inner side (enable_material = off, enable_hashjoin = off, enable_mergejoin = off):
EXPLAIN (ANALYZE)
SELECT * FROM test.events WHERE dt_pk IN (SELECT 1 UNION SELECT 2);
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------
Nested Loop (cost=0.06..2034.09 rows=20000 width=24) (actual time=0.057..15.523 rows=20000 loops=1)
Join Filter: (events_1.dt_pk = (1))
Rows Removed by Join Filter: 40000
-> Unique (cost=0.06..0.07 rows=2 width=4) (actual time=0.026..0.029 rows=2 loops=1)
-> Sort (cost=0.06..0.07 rows=2 width=4) (actual time=0.024..0.025 rows=2 loops=1)
Sort Key: (1)
Sort Method: quicksort Memory: 25kB
-> Append (cost=0.00..0.05 rows=2 width=4) (actual time=0.006..0.009 rows=2 loops=1)
-> Result (cost=0.00..0.01 rows=1 width=4) (actual time=0.005..0.005 rows=1 loops=1)
-> Result (cost=0.00..0.01 rows=1 width=4) (actual time=0.001..0.001 rows=1 loops=1)
-> Append (cost=0.00..642.00 rows=30000 width=24) (actual time=0.012..4.334 rows=30000 loops=2)
-> Seq Scan on events_1 (cost=0.00..164.00 rows=10000 width=24) (actual time=0.011..1.057 rows=10000 loops=2)
-> Seq Scan on events_2 (cost=0.00..164.00 rows=10000 width=24) (actual time=0.004..0.641 rows=10000 loops=2)
-> Seq Scan on events_3 (cost=0.00..164.00 rows=10000 width=24) (actual time=0.002..0.594 rows=10000 loops=2)
Planning Time: 0.531 ms
Execution Time: 16.567 ms
(16 rows)
I am not certain, but it may be because the tables are so small. You might want to try with bigger tables.
If you care more about get it working than the fine details, and you haven't tried this yet: you can rewrite the query to something like
explain analyze select *
from test.dates d
join test.events e on e.dt_pk = d.id
where
d.dt between '2020-01-02'::date and '2020-01-03'::date
and e.dt_pk in (extract(day from '2020-01-02'::date)::int,
extract(day from '2020-01-03'::date)::int);
which will give the expected pruning.

Postgresql very slow query on indexed columns

I have very simple query which uses json data for joining on primary table:
WITH
timecode_range AS
(
SELECT
(t->>'table_id')::integer AS table_id,
(t->>'timecode_from')::bigint AS timecode_from,
(t->>'timecode_to')::bigint AS timecode_to
FROM (SELECT '{"table_id":1,"timecode_from":19890328,"timecode_to":119899328}'::jsonb t) rowset
)
SELECT n.*
FROM partition.json_notification n
INNER JOIN timecode_range r ON n.table_id = r.table_id AND n.timecode > r.timecode_from AND n.timecode <= r.timecode_to
It works perfectly when "timecode_range" returns only 1 record:
Nested Loop (cost=0.43..4668.80 rows=1416 width=97) (actual time=0.352..0.352 rows=0 loops=1)
CTE timecode_range
-> Result (cost=0.00..0.01 rows=1 width=0) (actual time=0.002..0.002 rows=1 loops=1)
-> CTE Scan on timecode_range r (cost=0.00..0.02 rows=1 width=20) (actual time=0.007..0.007 rows=1 loops=1)
-> Index Scan using json_notification_pkey on json_notification n (cost=0.42..4654.61 rows=1416 width=97) (actual time=0.322..0.322 rows=0 loops=1)
Index Cond: ((timecode > r.timecode_from) AND (timecode <= r.timecode_to))
Filter: (r.table_id = table_id)
Planning time: 2.292 ms
Execution time: 0.665 ms
But when I need to return several records:
WITH
timecode_range AS
(
SELECT
(t->>'table_id')::integer AS table_id,
(t->>'timecode_from')::bigint AS timecode_from,
(t->>'timecode_to')::bigint AS timecode_to
FROM (SELECT json_array_elements('[{"table_id":1,"timecode_from":19890328,"timecode_to":119899328}]') t) rowset
)
SELECT n.*
FROM partition.json_notification n
INNER JOIN timecode_range r ON n.table_id = r.table_id AND n.timecode > r.timecode_from AND n.timecode <= r.timecode_to
It starts using sequential scan and execution time dramatically grows :(
Hash Join (cost=7.01..37289.68 rows=92068 width=97) (actual time=418.563..418.563 rows=0 loops=1)
Hash Cond: (n.table_id = r.table_id)
Join Filter: ((n.timecode > r.timecode_from) AND (n.timecode <= r.timecode_to))
Rows Removed by Join Filter: 14444
CTE timecode_range
-> Subquery Scan on rowset (cost=0.00..3.76 rows=100 width=32) (actual time=0.233..0.234 rows=1 loops=1)
-> Result (cost=0.00..0.51 rows=100 width=0) (actual time=0.218..0.218 rows=1 loops=1)
-> Seq Scan on json_notification n (cost=0.00..21703.36 rows=840036 width=97) (actual time=0.205..312.991 rows=840036 loops=1)
-> Hash (cost=2.00..2.00 rows=100 width=20) (actual time=0.239..0.239 rows=1 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> CTE Scan on timecode_range r (cost=0.00..2.00 rows=100 width=20) (actual time=0.235..0.236 rows=1 loops=1)
Planning time: 4.729 ms
Execution time: 418.937 ms
What am I doing wrong?
PostgreSQL has no possibility to estimate the number of rows returned from a table function, so it uses the ROWS value specified in CREATE FUNCTION (default 1000).
For json_array_elements this value is set to 100:
SELECT prorows FROM pg_proc WHERE proname = 'json_array_elements';
┌─────────┐
│ prorows │
├─────────┤
│ 100 │
└─────────┘
(1 row)
But in your case the function returns only 1 row.
This misestimate makes PostgreSQL choose another join strategy (hash join instead of nested loop), which causes the longer execution time.
If you can choose some other construct than such a table function (e.g. a VALUES statement) that PostgreSQL can estimate, you'll get a better plan.
An alternative is to use a LIMIT clause on the CTE definition if you can safely specify an upper limit.
If you think that PostgreSQL is wrong when it switches to a hash join beyond a certain row count, you can test as follows:
Run the query (using a sequential scan and a hash join) and measure the duration (psql's \timing command will help).
Force a nested loop join:
SET enable_hashjoin=off;
SET enable_mergejoin=off;
Run the query again (with a nested loop join) and measure the duration.
If PostgreSQL is indeed wrong, you could adjust the optimizer parameters by lowering random_page_cost to a value closer to seq_page_cost.

Loose index scan in Postgres on more than one field?

I have several large tables in Postgres 9.2 (millions of rows) where I need to generate a unique code based on the combination of two fields, 'source' (varchar) and 'id' (int). I can do this by generating row_numbers over the result of:
SELECT source,id FROM tablename GROUP BY source,id
but the results can take a while to process. It has been recommended that if the fields are indexed, and there are a proportionally small number of index values (which is my case), that a loose index scan may be a better option: http://wiki.postgresql.org/wiki/Loose_indexscan
WITH RECURSIVE
t AS (SELECT min(col) AS col FROM tablename
UNION ALL
SELECT (SELECT min(col) FROM tablename WHERE col > t.col) FROM t WHERE t.col IS NOT NULL)
SELECT col FROM t WHERE col IS NOT NULL
UNION ALL
SELECT NULL WHERE EXISTS(SELECT * FROM tablename WHERE col IS NULL);
The example operates on a single field though. Trying to return more than one field generates an error: subquery must return only one column. One possibility might be to try retrieving an entire ROW - e.g. SELECT ROW(min(source),min(id)..., but then I'm not sure what the syntax of the WHERE statement would need to look like to work with individual row elements.
The question is: can the recursion-based code be modified to work with more than one column, and if so, how? I'm committed to using Postgres, but it looks like MySQL has implemented loose index scans for more than one column: http://dev.mysql.com/doc/refman/5.1/en/group-by-optimization.html
As recommended, I'm attaching my EXPLAIN ANALYZE results.
For my situation - where I'm selecting distinct values for 2 columns using GROUP BY, it's the following:
HashAggregate (cost=1645408.44..1654099.65 rows=869121 width=34) (actual time=35411.889..36008.475 rows=1233080 loops=1)
-> Seq Scan on tablename (cost=0.00..1535284.96 rows=22024696 width=34) (actual time=4413.311..25450.840 rows=22025768 loops=1)
Total runtime: 36127.789 ms
(3 rows)
I don't know how to do a 2-column index scan (that's the question), but for purposes of comparison, using a GROUP BY on one column, I get:
HashAggregate (cost=1590346.70..1590347.69 rows=99 width=8) (actual time=32310.706..32310.722 rows=100 loops=1)
-> Seq Scan on tablename (cost=0.00..1535284.96 rows=22024696 width=8) (actual time=4764.609..26941.832 rows=22025768 loops=1)
Total runtime: 32350.899 ms
(3 rows)
But for a loose index scan on one column, I get:
Result (cost=181.28..198.07 rows=101 width=8) (actual time=0.069..1.935 rows=100 loops=1)
CTE t
-> Recursive Union (cost=1.74..181.28 rows=101 width=8) (actual time=0.062..1.855 rows=101 loops=1)
-> Result (cost=1.74..1.75 rows=1 width=0) (actual time=0.061..0.061 rows=1 loops=1)
InitPlan 1 (returns $1)
-> Limit (cost=0.00..1.74 rows=1 width=8) (actual time=0.057..0.057 rows=1 loops=1)
-> Index Only Scan using tablename_id on tablename (cost=0.00..38379014.12 rows=22024696 width=8) (actual time=0.055..0.055 rows=1 loops=1)
Index Cond: (id IS NOT NULL)
Heap Fetches: 0
-> WorkTable Scan on t (cost=0.00..17.75 rows=10 width=8) (actual time=0.017..0.017 rows=1 loops=101)
Filter: (id IS NOT NULL)
Rows Removed by Filter: 0
SubPlan 3
-> Result (cost=1.75..1.76 rows=1 width=0) (actual time=0.016..0.016 rows=1 loops=100)
InitPlan 2 (returns $3)
-> Limit (cost=0.00..1.75 rows=1 width=8) (actual time=0.016..0.016 rows=1 loops=100)
-> Index Only Scan using tablename_id on tablename (cost=0.00..12811462.41 rows=7341565 width=8) (actual time=0.015..0.015 rows=1 loops=100)
Index Cond: ((id IS NOT NULL) AND (id > t.id))
Heap Fetches: 0
-> Append (cost=0.00..16.79 rows=101 width=8) (actual time=0.067..1.918 rows=100 loops=1)
-> CTE Scan on t (cost=0.00..2.02 rows=100 width=8) (actual time=0.067..1.899 rows=100 loops=1)
Filter: (id IS NOT NULL)
Rows Removed by Filter: 1
-> Result (cost=13.75..13.76 rows=1 width=0) (actual time=0.002..0.002 rows=0 loops=1)
One-Time Filter: $5
InitPlan 5 (returns $5)
-> Index Only Scan using tablename_id on tablename (cost=0.00..13.75 rows=1 width=0) (actual time=0.002..0.002 rows=0 loops=1)
Index Cond: (id IS NULL)
Heap Fetches: 0
Total runtime: 2.040 ms
The full table definition looks like this:
CREATE TABLE tablename
(
source character(25),
id bigint NOT NULL,
time_ timestamp without time zone,
height numeric,
lon numeric,
lat numeric,
distance numeric,
status character(3),
geom geometry(PointZ,4326),
relid bigint
)
WITH (
OIDS=FALSE
);
CREATE INDEX tablename_height
ON public.tablename
USING btree
(height);
CREATE INDEX tablename_geom
ON public.tablename
USING gist
(geom);
CREATE INDEX tablename_id
ON public.tablename
USING btree
(id);
CREATE INDEX tablename_lat
ON public.tablename
USING btree
(lat);
CREATE INDEX tablename_lon
ON public.tablename
USING btree
(lon);
CREATE INDEX tablename_relid
ON public.tablename
USING btree
(relid);
CREATE INDEX tablename_sid
ON public.tablename
USING btree
(source COLLATE pg_catalog."default", id);
CREATE INDEX tablename_source
ON public.tablename
USING btree
(source COLLATE pg_catalog."default");
CREATE INDEX tablename_time
ON public.tablename
USING btree
(time_);
Answer selection:
I took some time in comparing the approaches that were provided. It's at times like this that I wish that more than one answer could be accepted, but in this case, I'm giving the tick to #jjanes. The reason for this is that his solution matches the question as originally posed more closely, and I was able to get some insights as to the form of the required WHERE statement. In the end, the HashAggregate is actually the fastest approach (for me), but that's due to the nature of my data, not any problems with the algorithms. I've attached the EXPLAIN ANALYZE for the different approaches below, and will be giving +1 to both jjanes and joop.
HashAggregate:
HashAggregate (cost=1018669.72..1029722.08 rows=1105236 width=34) (actual time=24164.735..24686.394 rows=1233080 loops=1)
-> Seq Scan on tablename (cost=0.00..908548.48 rows=22024248 width=34) (actual time=0.054..14639.931 rows=22024982 loops=1)
Total runtime: 24787.292 ms
Loose Index Scan modification
CTE Scan on t (cost=13.84..15.86 rows=100 width=112) (actual time=0.916..250311.164 rows=1233080 loops=1)
Filter: (source IS NOT NULL)
Rows Removed by Filter: 1
CTE t
-> Recursive Union (cost=0.00..13.84 rows=101 width=112) (actual time=0.911..249295.872 rows=1233081 loops=1)
-> Limit (cost=0.00..0.04 rows=1 width=34) (actual time=0.910..0.911 rows=1 loops=1)
-> Index Only Scan using tablename_sid on tablename (cost=0.00..965442.32 rows=22024248 width=34) (actual time=0.908..0.908 rows=1 loops=1)
Heap Fetches: 0
-> WorkTable Scan on t (cost=0.00..1.18 rows=10 width=112) (actual time=0.201..0.201 rows=1 loops=1233081)
Filter: (source IS NOT NULL)
Rows Removed by Filter: 0
SubPlan 1
-> Limit (cost=0.00..0.05 rows=1 width=34) (actual time=0.100..0.100 rows=1 loops=1233080)
-> Index Only Scan using tablename_sid on tablename (cost=0.00..340173.38 rows=7341416 width=34) (actual time=0.100..0.100 rows=1 loops=1233080)
Index Cond: (ROW(source, id) > ROW(t.source, t.id))
Heap Fetches: 0
SubPlan 2
-> Limit (cost=0.00..0.05 rows=1 width=34) (actual time=0.099..0.099 rows=1 loops=1233080)
-> Index Only Scan using tablename_sid on tablename (cost=0.00..340173.38 rows=7341416 width=34) (actual time=0.098..0.098 rows=1 loops=1233080)
Index Cond: (ROW(source, id) > ROW(t.source, t.id))
Heap Fetches: 0
Total runtime: 250491.559 ms
Merge Anti Join
Merge Anti Join (cost=0.00..12099015.26 rows=14682832 width=42) (actual time=48.710..541624.677 rows=1233080 loops=1)
Merge Cond: ((src.source = nx.source) AND (src.id = nx.id))
Join Filter: (nx.time_ > src.time_)
Rows Removed by Join Filter: 363464177
-> Index Only Scan using tablename_pkey on tablename src (cost=0.00..1060195.27 rows=22024248 width=42) (actual time=48.566..5064.551 rows=22024982 loops=1)
Heap Fetches: 0
-> Materialize (cost=0.00..1115255.89 rows=22024248 width=42) (actual time=0.011..40551.997 rows=363464177 loops=1)
-> Index Only Scan using tablename_pkey on tablename nx (cost=0.00..1060195.27 rows=22024248 width=42) (actual time=0.008..8258.890 rows=22024982 loops=1)
Heap Fetches: 0
Total runtime: 541750.026 ms
Rather hideous, but this seems to work:
WITH RECURSIVE
t AS (
select a,b from (select a,b from foo order by a,b limit 1) asdf union all
select (select a from foo where (a,b) > (t.a,t.b) order by a,b limit 1),
(select b from foo where (a,b) > (t.a,t.b) order by a,b limit 1)
from t where t.a is not null)
select * from t where t.a is not null;
I don't really understand why the "is not nulls" are needed, as where do the nulls come from in the first place?
DROP SCHEMA zooi CASCADE;
CREATE SCHEMA zooi ;
SET search_path=zooi,public,pg_catalog;
CREATE TABLE tablename
( source character(25) NOT NULL
, id bigint NOT NULL
, time_ timestamp without time zone NOT NULL
, height numeric
, lon numeric
, lat numeric
, distance numeric
, status character(3)
, geom geometry(PointZ,4326)
, relid bigint
, PRIMARY KEY (source,id,time_) -- <<-- Primary key here
) WITH ( OIDS=FALSE);
-- invent some bogus data
INSERT INTO tablename(source,id,time_)
SELECT 'SRC_'|| (gs%10)::text
,gs/10
,gt
FROM generate_series(1,1000) gs
, generate_series('2013-12-01', '2013-12-07', '1hour'::interval) gt
;
Select unique values for two key fields:
VACUUM ANALYZE tablename;
EXPLAIN ANALYZE
SELECT source,id,time_
FROM tablename src
WHERE NOT EXISTS (
SELECT * FROM tablename nx
WHERE nx.source =src.source
AND nx.id = src.id
AND time_ > src.time_
)
;
Generates this plan here (Pg-9.3):
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------
Hash Anti Join (cost=4981.00..12837.82 rows=96667 width=42) (actual time=547.218..1194.335 rows=1000 loops=1)
Hash Cond: ((src.source = nx.source) AND (src.id = nx.id))
Join Filter: (nx.time_ > src.time_)
Rows Removed by Join Filter: 145000
-> Seq Scan on tablename src (cost=0.00..2806.00 rows=145000 width=42) (actual time=0.010..210.810 rows=145000 loops=1)
-> Hash (cost=2806.00..2806.00 rows=145000 width=42) (actual time=546.497..546.497 rows=145000 loops=1)
Buckets: 16384 Batches: 1 Memory Usage: 9063kB
-> Seq Scan on tablename nx (cost=0.00..2806.00 rows=145000 width=42) (actual time=0.006..259.864 rows=145000 loops=1)
Total runtime: 1197.374 ms
(9 rows)
The hash-joins will probably disappear once the data outgrows the work_mem:
Merge Anti Join (cost=0.83..8779.56 rows=29832 width=120) (actual time=0.981..2508.912 rows=1000 loops=1)
Merge Cond: ((src.source = nx.source) AND (src.id = nx.id))
Join Filter: (nx.time_ > src.time_)
Rows Removed by Join Filter: 184051
-> Index Scan using tablename_sid on tablename src (cost=0.41..4061.57 rows=32544 width=120) (actual time=0.055..250.621 rows=145000 loops=1)
-> Index Scan using tablename_sid on tablename nx (cost=0.41..4061.57 rows=32544 width=120) (actual time=0.008..603.403 rows=328906 loops=1)
Total runtime: 2510.505 ms
Lateral joins can give you a clean code to select multiple columns in nested selects, without checking for null as no subqueries in select clause.
-- Assuming you want to get one '(a,b)' for every 'a'.
with recursive t as (
(select a, b from foo order by a, b limit 1)
union all
(select s.* from t, lateral(
select a, b from foo f
where f.a > t.a
order by a, b limit 1) s)
)
select * from t;

Postgres Slow group by query with max

I am using postgres 9.1 and I have a table with about 3.5M rows of eventtype (varchar) and eventtime (timestamp) - and some other fields. There are only about 20 different eventtype's and the event time spans about 4 years.
I want to get the last timestamp of each event type. If I run a query like:
select eventtype, max(eventtime)
from allevents
group by eventtype
it takes around 20 seconds. Selecting distinct eventtype's is equally slow. The query plan shows a full sequential scan of the table - not surprising it is slow.
Explain analyse for the above query gives:
HashAggregate (cost=84591.47..84591.68 rows=21 width=21) (actual time=20918.131..20918.141 rows=21 loops=1)
-> Seq Scan on allevents (cost=0.00..66117.98 rows=3694698 width=21) (actual time=0.021..4831.793 rows=3694392 loops=1)
Total runtime: 20918.204 ms
If I add a where clause to select a specific eventtype, it takes anywhere from 40ms to 150ms which is at least decent.
Query plan when selecting specific eventtype:
GroupAggregate (cost=343.87..24942.71 rows=1 width=21) (actual time=98.397..98.397 rows=1 loops=1)
-> Bitmap Heap Scan on allevents (cost=343.87..24871.07 rows=14325 width=21) (actual time=6.820..89.610 rows=19736 loops=1)
Recheck Cond: ((eventtype)::text = 'TEST_EVENT'::text)
-> Bitmap Index Scan on allevents_idx2 (cost=0.00..340.28 rows=14325 width=0) (actual time=6.121..6.121 rows=19736 loops=1)
Index Cond: ((eventtype)::text = 'TEST_EVENT'::text)
Total runtime: 98.482 ms
Primary key is (eventtype, eventtime). I also have the following indexes:
allevents_idx (event time desc, eventtype)
allevents_idx2 (eventtype).
How can I speed up the query?
Results of query play for correlated subquery suggested by #denis below with 14 manually entered values gives:
Function Scan on unnest val (cost=0.00..185.40 rows=100 width=32) (actual time=0.121..8983.134 rows=14 loops=1)
SubPlan 2
-> Result (cost=1.83..1.84 rows=1 width=0) (actual time=641.644..641.645 rows=1 loops=14)
InitPlan 1 (returns $1)
-> Limit (cost=0.00..1.83 rows=1 width=8) (actual time=641.640..641.641 rows=1 loops=14)
-> Index Scan using allevents_idx on allevents (cost=0.00..322672.36 rows=175938 width=8) (actual time=641.638..641.638 rows=1 loops=14)
Index Cond: ((eventtime IS NOT NULL) AND ((eventtype)::text = val.val))
Total runtime: 8983.203 ms
Using the recursive query suggested by #jjanes, the query runs between 4 and 5 seconds with the following plan:
CTE Scan on t (cost=260.32..448.63 rows=101 width=32) (actual time=0.146..4325.598 rows=22 loops=1)
CTE t
-> Recursive Union (cost=2.52..260.32 rows=101 width=32) (actual time=0.075..1.449 rows=22 loops=1)
-> Result (cost=2.52..2.53 rows=1 width=0) (actual time=0.074..0.074 rows=1 loops=1)
InitPlan 1 (returns $1)
-> Limit (cost=0.00..2.52 rows=1 width=13) (actual time=0.070..0.071 rows=1 loops=1)
-> Index Scan using allevents_idx2 on allevents (cost=0.00..9315751.37 rows=3696851 width=13) (actual time=0.070..0.070 rows=1 loops=1)
Index Cond: ((eventtype)::text IS NOT NULL)
-> WorkTable Scan on t (cost=0.00..25.58 rows=10 width=32) (actual time=0.059..0.060 rows=1 loops=22)
Filter: (eventtype IS NOT NULL)
SubPlan 3
-> Result (cost=2.53..2.54 rows=1 width=0) (actual time=0.059..0.059 rows=1 loops=21)
InitPlan 2 (returns $3)
-> Limit (cost=0.00..2.53 rows=1 width=13) (actual time=0.057..0.057 rows=1 loops=21)
-> Index Scan using allevents_idx2 on allevents (cost=0.00..3114852.66 rows=1232284 width=13) (actual time=0.055..0.055 rows=1 loops=21)
Index Cond: (((eventtype)::text IS NOT NULL) AND ((eventtype)::text > t.eventtype))
SubPlan 6
-> Result (cost=1.83..1.84 rows=1 width=0) (actual time=196.549..196.549 rows=1 loops=22)
InitPlan 5 (returns $6)
-> Limit (cost=0.00..1.83 rows=1 width=8) (actual time=196.546..196.546 rows=1 loops=22)
-> Index Scan using allevents_idx on allevents (cost=0.00..322946.21 rows=176041 width=8) (actual time=196.544..196.544 rows=1 loops=22)
Index Cond: ((eventtime IS NOT NULL) AND ((eventtype)::text = t.eventtype))
Total runtime: 4325.694 ms
What you need is a "skip scan" or "loose index scan". PostgreSQL's planner does not yet implement those automatically, but you can trick it into using one by using a recursive query.
WITH RECURSIVE t AS (
SELECT min(eventtype) AS eventtype FROM allevents
UNION ALL
SELECT (SELECT min(eventtype) as eventtype FROM allevents WHERE eventtype > t.eventtype)
FROM t where t.eventtype is not null
)
select eventtype, (select max(eventtime) from allevents where eventtype=t.eventtype) from t;
There may be a way to collapse the max(eventtime) into the recursive query rather than doing it outside that query, but if so I have not hit upon it.
This needs an index on (eventtype, eventtime) in order to be efficient. You can have it be DESC on the eventtime, but that is not necessary. This is efficiently only if eventtype has only a few distinct values (21 of them, in your case).
Based on the question you already have the relevant index.
If upgrading to Postgres 9.3 or an index on (eventtype, eventtime desc) doesn't make a difference, this is a case where rewriting the query so it uses a correlated subquery works very well if you can enumerate all of the event types manually:
select val as eventtype,
(select max(eventtime)
from allevents
where allevents.eventtype = val
) as eventtime
from unnest('{type1,type2,…}'::text[]) as val;
Here's the plans I get when running similar queries:
denis=# select version();
version
-----------------------------------------------------------------------------------------------------------------------------------
PostgreSQL 9.3.1 on x86_64-apple-darwin11.4.2, compiled by Apple LLVM version 4.2 (clang-425.0.28) (based on LLVM 3.2svn), 64-bit
(1 row)
Test data:
denis=# create table test (evttype int, evttime timestamp, primary key (evttype, evttime));
CREATE TABLE
denis=# insert into test (evttype, evttime) select i, now() + (i % 3) * interval '1 min' - j * interval '1 sec' from generate_series(1,10) i, generate_series(1,10000) j;
INSERT 0 100000
denis=# create index on test (evttime, evttype);
CREATE INDEX
denis=# vacuum analyze test;
VACUUM
First query:
denis=# explain analyze select evttype, max(evttime) from test group by evttype; QUERY PLAN
-------------------------------------------------------------------------------------------------------------------
HashAggregate (cost=2041.00..2041.10 rows=10 width=12) (actual time=54.983..54.987 rows=10 loops=1)
-> Seq Scan on test (cost=0.00..1541.00 rows=100000 width=12) (actual time=0.009..15.954 rows=100000 loops=1)
Total runtime: 55.045 ms
(3 rows)
Second query:
denis=# explain analyze select val as evttype, (select max(evttime) from test where test.evttype = val) as evttime from unnest('{1,2,3,4,5,6,7,8,9,10}'::int[]) val;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Function Scan on unnest val (cost=0.00..48.39 rows=100 width=4) (actual time=0.086..0.292 rows=10 loops=1)
SubPlan 2
-> Result (cost=0.46..0.47 rows=1 width=0) (actual time=0.024..0.024 rows=1 loops=10)
InitPlan 1 (returns $1)
-> Limit (cost=0.42..0.46 rows=1 width=8) (actual time=0.021..0.021 rows=1 loops=10)
-> Index Only Scan Backward using test_pkey on test (cost=0.42..464.42 rows=10000 width=8) (actual time=0.019..0.019 rows=1 loops=10)
Index Cond: ((evttype = val.val) AND (evttime IS NOT NULL))
Heap Fetches: 0
Total runtime: 0.370 ms
(9 rows)
index on (eventtype, eventtime desc) should help. or reindex on primary key index. I would also recommend replace type of eventtype to enum (if number of types is fixed) or int/smallint. This will decrease size of data and indexes so queries will run faster.