CockroachDB as Eventstore a good idea? - cqrs

I'm looking for an EventStore for an EvenSourcing and CQRS system that i'm considering to develop in the neares future. I've startet to get familiar with CockroachDB and impressed by scalability, while having all that guaranties, that are nice for Event Store and queries on it.
I'm thinking here about, i guess one(?) table for events. Something looking similar to this:
Columns in the Table
AggregateId [Guid]
Data [Blob]
SequenceNumber [Long]
Version [Int]
So i have two questions:
Is CockroachDB a good choice as EventStore at all?
Will it match my performance and scale expentations in this scenario. E.g would it scale as expected on increasing data over time and more read an write traffic/operations?

Cockroachdb is a good choice as an Event Store. One thing to watch out for is how you pick your primary key. If you use a timestamp as the primary key for instance, you will see all writes hit the same node, so it is better to pick a key such that writes done close in time are distributed evenly over all nodes. Picking a random number as an eventID and using that as a key will work.
CockroachDB doesn't as of yet (coming soon) support notifications on changes to the database which can be useful when using it as an event store

CockroachDB now supports notification on changes to the database in the form of Change Data Capture (CDC) change feeds. Here's the documentation:
https://www.cockroachlabs.com/docs/stable/stream-data-out-of-cockroachdb-using-changefeeds.html
and a couple relevant blog posts:
https://www.cockroachlabs.com/blog/change-data-capture/
https://www.cockroachlabs.com/blog/why-use-change-data-capture/
There's also a recorded presentation/demonstration of CRDB change feeds on YouTube:
https://www.youtube.com/watch?v=UTaRWpNcOgk

Related

Provide sync between PostgreSQL and NoSQL database

I've got a PostgreSQL DB with very normalized data, so a lot of requests spawn a lot of joins and my DB works slow. I want to denormalize data from PostgreSQL and store it in a NoSQL DB for readonly access. For that I must provide sync between PostgreSQL and NoSQL (little latency is allowed). I want to consider different ways so I can choose the most suitable.
I can use events from models when there were changes and put them into a queue. After that a worker can process events and add necessary data to NoSQL, but I've got a lot of legacy code which is bad quality and I don't want to change it a lot. Also, I can denormalize data and put it to PostgreSQL but don't know if this is suitable solution or not.
What solutions exist for such tasks?
I did research on this topic and I've got results.
There are several ways to solve this task. I tell you about 3 general ways.
1) You can use signals(ORM signals for example) in your app to get notifications about changes.
You should put it to queue, RabbitMQ if changes are not a lot and Kafka if there are a lot of changes. It's a simple solution for not complicated apps which were good written.
If you have complex architecture and a lot of legacy then you should choose this approach:
General meaning about this approach is here
2) Use PostgreSQL logical decoding to get events about changes, it's very powerful feature. I found two solution where was used this feature: 1. Use tool bottledwater with Kafka, it works, but not develop any more. 2. Use tool debezium, it works and has active community.
3) Use PostgreSQL logical decoding to get events about changes and write own tool to get events.

Commit to a log like Kafka + database with ACID properties?

I'm planning in test how make this kind of architecture to work:
http://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/
Where all the data is stored as facts in a log, but the validations when posted a change must be against a table. For example, If I send a "Create Invoice with Customer 1" I will need to validate if the customer exist and other stuff, then when the validation pass commit to the log and put the current change to the table, so the table have the most up-to-date information yet I have all the history of the changes.
I could put the logs into the database in a table (I use PostgreSql). However I'm concerned about the scalability of doing that, also, I wish to suscribe to the event stream from multiple clients and PG neither other RDBMS I know let me to do this without polling.
But if I use Kafka I worry about the ACID between both storages, so Kafka could get wrong data that PG rollback or something similar.
So:
1- Is possible to keep consistency between a RDBMS and a log storage OR
2- Is possible to suscribe in real time and tune PG (or other RDBMS) for fast event storage?
Easy(1) answers for provided questions:
Setting up your transaction isolation level properly may be enough to achieve consistency and not worry about DB rollbacks. You still can occasionally create inconsistency, unless you set isolation level to 'serializable'. Even then, you're guaranteed to be consistent, but still could have undesirable behaviors. For example, client creates a customer and puts an invoice in a rapid succession using an async API, and invoice event hits your backed system first. In this case invoice event would be invalidated and a client will need to retry hoping that customer was created by that time. Easy to avoid if you control clients and mandate them to use sync API.
Whether it is possible to store events in a relational DB depends on your anticipated dataset size, hardware and access patterns. I'm a big time Postgres fan and there is a lot you can do to make event lookups blazingly fast. My rule of thumb -- if your operating table size is below 2300-300GB and you have a decent server, Postgres is a way to go. With event sourcing there are typically no joins and a common access pattern is to get all events by id (optionally restricted by time stamp). Postgres excels at this kind of queries, provided you index smartly. However, event subscribers will need to pull this data, so may not be good if you have thousands of subscribers, which is rarely the case in practice.
"Conceptually correct" answer:
If you still want to pursue streaming approach and fundamentally resolve race conditions then you have to provide event ordering guarantees across all events in the system. For example, you need to be able to order 'add customer 1' event and 'create invoice for customer 1' event so that you can guarantee consistency at any time. This is a really hard problem to solve in general for a distributed system (see e.g. vector clocks). You can mitigate it with some clever tricks that would work for your particular case, e.g. in the example above you can partition your events by 'customerId' early as they hit backend, then you can have a guarantee that all event related to the same customer will be processed (roughly) in order they were created.
Would be happy to clarify my points if needed.
(1) Easy vs simple: mandatory link

Incrementing hundreds of counters at once, redis or mongodb?

Background/Intent:
So I'm going to create an event tracker from scratch and have a couple of ideas on how to do this but I'm unsure of the best way to proceed with the database side of things. One thing I am interested in doing is allowing these events to be completely dynamic, but at the same time to allow for reporting on relational event counters.
For example, all countries broken down by operating systems. The desired effect would be:
US # of events
iOS - # of events that occured in US
Android - # of events that occured in US
CA # of events
iOS - # of events that occured in CA
Android - # of events that occured in CA
etc.
My intent is to be able to accept these event names like so:
/?country=US&os=iOS&device=iPhone&color=blue&carrier=Sprint&city=orlando&state=FL&randomParam=123&randomParam2=456&randomParam3=789
Which means in order to do the relational counters for something like the above I would potentially be incrementing 100+ counters per request.
Assume there will be 10+ million of the above requests per day.
I want to keep things completely dynamic in terms of the event names being tracked and I also want to do it in such a manner that the lookups on the data remains super quick. As such I have been looking into using redis or mongodb for this.
Questions:
Is there a better way to do this then counters while keeping the fields dynamic?
Provided this was all in one document (structured like a tree), would using the $inc operator in mongodb to increment 100+ counters at the same time in one operation be viable and not slow? The upside here being I can retrieve all of the statistics for one 'campaign' quickly in a single query.
Would this be better suited to redis and to do a zincrby for all of the applicable counters for the event?
Thanks
Depending on how your key structure is laid out I would recommend pipelining the zincr commands. You have an easy "commit" trigger - the request. If you were to iterate over your parameters and zincr each key, then at the end of the request pass the execute command it will be very fast. I've implemented a system like you describe as both a cgi and a Django app. I set up a key structure along the lines of this:
YYYY-MM-DD:HH:MM -> sorted set
And was able to process Something like 150000-200000 increments per second on the redis side with a single process which should be plenty for your described scenario. This key structure allows me to grab data based on windows of time. I also added an expire to the keys to avoid writing a db cleanup process. I then had a cronjob that would do set operations to "roll-up" stats in to hourly, daily, and weekly using variants of the aforementioned key pattern. I bring these ideas up as they are ways you can take advantage of the built in capabilities of Redis to make the reporting side simpler. There are other ways of doing it but this pattern seems to work well.
As noted by eyossi the global lock can be a real problem with systems that do concurrent writes and reads. If you are writing this as a real time system the concurrency may well be an issue. If it is an "end if day" log parsing system then it would not likely trigger the contention unless you run multiple instances of the parser or reports at the time of input. With regards to keeping reads fast In Redis, I would consider setting up a read only redis instance slaved off of the main one. If you put it on the server running the report and point the reporting process at it it should be very quick to generate the reports.
Depending on your available memory, data set size, and whether you store any other type of data in the redis instance you might consider running a 32bit redis server to keep the memory usage down. A 32b instance should be able to keep a lot of this type of data in a small chunk of memory, but if running the normal 64 bit Redis isn't taking too much memory feel free to use it. As always test your own usage patterns to validate
In redis you could use multi to increment multiple keys at the same time.
I had some bad experience with MongoDB, i have found that it can be really tricky when you have a lot of writes to it...
you can look at this link for more info and don't forget to read the part that says "MongoDB uses 1 BFGL (big f***ing global lock)" (which maybe already improved in version 2.x - i didn't check it)
On the other hand, i had a good experience with Redis, i am using it for a lot of read / writes and it works great.
you can find more information about how i am using Redis (to get a feeling about the amount of concurrent reads / writes) here: http://engineering.picscout.com/2011/11/redis-as-messaging-framework.html
I would rather use pipelinethan multiif you don't need the atomic feature..

NoSQL for time series/logged instrument reading data that is also versioned

My Data
It's primarily monitoring data, passed in the form of Timestamp: Value, for each monitored value, on each monitored appliance. It's regularly collected over many appliances and many monitored values.
Additionally, it has the quirky feature of many of these data values being derived at the source, with the calculation changing from time to time. This means that my data is effectively versioned, and I need to be able to simply call up only data from the most recent version of the calculation. Note: This is not versioning where the old values are overwritten. I simply have timestamp cutoffs, beyond which the data changes its meaning.
My Usage
Downstream, I'm going to have various undefined data mining/machine learning uses for the data. It's not really clear yet what those uses are, but it is clear that I will be writing all of the downstream code in Python. Also, we are a very small shop, so I can really only deal with so much complexity in setup, maintenance, and interfacing to downstream applications. We just don't have that many people.
The Choice
I am not allowed to use a SQL RDBMS to store this data, so I have to find the right NoSQL solution. Here's what I've found so far:
Cassandra
Looks totally fine to me, but it seems like some of the major users have moved on. It makes me wonder if it's just not going to be that much of a vibrant ecosystem. This SE post seems to have good things to say: Cassandra time series data
Accumulo
Again, this seems fine, but I'm concerned that this is not a major, actively developed platform. It seems like this would leave me a bit starved for tools and documentation.
MongoDB
I have a, perhaps irrational, intense dislike for the Mongo crowd, and I'm looking for any reason to discard this as a solution. It seems to me like the data model of Mongo is all wrong for things with such a static, regular structure. My data even comes in (and has to stay in) order. That said, everybody and their mother seems to love this thing, so I'm really trying to evaluate its applicability. See this and many other SE posts: What NoSQL DB to use for sparse Time Series like data?
HBase
This is where I'm currently leaning. It seems like the successor to Cassandra with a totally usable approach for my problem. That said, it is a big piece of technology, and I'm concerned about really knowing what it is I'm signing up for, if I choose it.
OpenTSDB
This is basically a time-series specific database, built on top of HBase. Perfect, right? I don't know. I'm trying to figure out what another layer of abstraction buys me.
My Criteria
Open source
Works well with Python
Appropriate for a small team
Very well documented
Has specific features to take advantage of ordered time series data
Helps me solve some of my versioned data problems
So, which NoSQL database actually can help me address my needs? It can be anything, from my list or not. I'm just trying to understand what platform actually has code, not just usage patterns, that support my super specific, well understood needs. I'm not asking which one is best or which one is cooler. I'm trying to understand which technology can most natively store and manipulate this type of data.
Any thoughts?
It sounds like you are describing one of the most common use cases for Cassandra. Time series data in general is often a very good fit for the cassandra data model. More specifically many people store metric/sensor data like you are describing. See:
http://rubyscale.com/blog/2011/03/06/basic-time-series-with-cassandra/
http://www.datastax.com/dev/blog/advanced-time-series-with-cassandra
http://engineering.rockmelt.com/post/17229017779/modeling-time-series-data-on-top-of-cassandra
As far as your concerns with the community I'm not sure what is giving you that impression, but there is quite a large community (see irc, mailing lists) as well as a growing number of cassandra users.
http://www.datastax.com/cassandrausers
Regarding your criteria:
Open source
Yes
Works well with Python
http://pycassa.github.com/pycassa/
Appropriate for a small team
Yes
Very well documented
http://www.datastax.com/docs/1.1/index
Has specific features to take advantage of ordered time series data
See above links
Helps me solve some of my versioned data problems
If I understand your description correctly you could solve this multiple ways. You could start writing a new row when the version changes. Alternatively you could use composite columns to store the version along with the timestamp/value pair.
I'll also note that Accumulo, HBase, and Cassandra all have essentially the same data model. You will still find small differences around the data model in regards to specific features that each database offers, but the basics will be the same.
The bigger difference between the three will be the architecture of the system. Cassandra takes its architecture from Amazon's Dynamo. Every server in the cluster is the same and it is quite simple to setup. HBase and Accumulo or more direct clones of BigTable. These have more moving parts and will require more setup/types of servers. For example, setting up HDFS, Zookeeper, and HBase/Accumulo specific server types.
Disclaimer: I work for DataStax (we work with Cassandra)
I only have experience in Cassandra and MongoDB but my experience might add something.
So your basically doing time based metrics?
Ok if I understand right you use the timestamp as a versioning mechanism so that you query per a certain timestamp, say to get the latest calculation used you go based on the metric ID or whatever and get ts DESC and take off the first row?
It sounds like a versioned key value store at times.
With this in mind I probably would not recommend either of the two I have used.
Cassandra is too rigid and it's too heirachal, too based around how you query to the point where you can only make one pivot of graph data from (I presume you would wanna graph these metrics) the columfamily which is crazy, hence why I dropped it. As for searching (which Facebook use it for, and only that) it's not that impressive either.
MongoDB, well I love MongoDB and I am an elite of the user group and it could work here if you didn't use a key value storage policy but at the end of the day if your mind is not set and you don't like the tech then let me be the very first to say: don't use it! You will be no good at a tech that you don't like so stay away from it.
Though I would picture this happening in Mongo much like:
{
_id: ObjectID(),
metricId: 'AvailableMessagesInQueue',
formula: '4+5/10.01',
result: NaN
ts: ISODate()
}
And you query for the latest version of your calculation by:
var results = db.metrics.find({ 'metricId': 'AvailableMessagesInQueue' }).sort({ ts: -1 });
var latest = results.getNext();
Which would output the doc structure you see above. Without knowing more of exactly how you wish to query and the general servera and app scenario etc thats the best I can come up with.
I fond this thread on HBase though: http://mail-archives.apache.org/mod_mbox/hbase-user/201011.mbox/%3C5A76F6CE309AD049AAF9A039A39242820F0C20E5#sc-mbx04.TheFacebook.com%3E
Which might be of interest, it seems to support the argument that HBase is a good time based key value store.
I have not personally used HBase so do not take anything I say about it seriously....
I hope I have added something, if not you could try narrowing your criteria so we can answer more dedicated questions.
Hope it helps a little,
Not a plug for any particular technology but this article on Time Series storage using MongoDB might provide another way of thinking about the storage of large amounts of "sensor" data.
http://www.10gen.com/presentations/mongodc-2011/time-series-data-storage-mongodb
Axibase Time-Series Database
Open source
There is a free Community Edition
Works well with Python
https://github.com/axibase/atsd-api-python. There are also other language wrappers, for example ATSD R client.
Appropriate for a small team
Built-in graphics and rule engine make it productive for building an in-house reporting, dashboarding, or monitoring solution with less coding.
Very well documented
It's hard to beat IBM redbooks, but we're trying. API, configuration, and administration is documented in detail and with examples.
Has specific features to take advantage of ordered time series data
It's a time-series database from the ground-up so aggregation, filtering and non-parametric ARIMA and HW forecasts are available.
Helps me solve some of my versioned data problems
ATSD supports versioned time-series data natively in SE and EE editions. Versions keep track of status, change-time and source changes for the same timestamp for audit trails and reconciliations. It's a useful feature to have if you need clean, verified data with tracing. Think energy metering, PHMR records. ATSD schema also supports series tags, which you could use to store versioning columns manually if you're on CE edition or you need to extend default versioning columns: status, source, change-time.
Disclosure - I work for the company that develops ATSD.

Creating a snapshot in a distributed architecture

I'm thinking about the problem in question title: if I have to query for an aggregate in a distributed architecture where the distributed event store can eventually be waiting for last events to be distributed.. How can I know if the aggregate i'm reading via read model is not being replaced by the updated one in another server of the network?
I have an http server that receive events to save on the store. Store not exists actually but I want implement it soon.
Events regards huge aggregate that serialized in json format takes 4MB
Another sub-question is what storage do you recommend for the snapshot?
EDIT
I don't understand if the question is not written well or if I have selected wrong tags...
The ability to know when the "last" event in the distributed store is processed depends on two things:
Can you define "last"?
Does the distributed storage engine expose it to you?
The CAP theorem is a good reference to the sort of problems you are going to have with both of those in a distributed data store; in general, unless you give up availability you are not going to be able to have the properties needed to get what you want.
On the other hand, if you can define last in a meaningful way, you can still have what you want. For example: do your events expire after a while? If, for example, they expire after 12 hours, you know that you can always meaningfully define last as "the moment in time 12 hours ago", because any unprocessed event older than that is obsolete...
To answer your sub-question, I strongly recommend a storage engine that you do not write yourself, because distributed data storage is an awesomely hard problems that many very smart people, working for companies doing nothing but solving problems in this space, are doing for you.
Leverage their work instead.