Optimal way of using joins in Redshift - amazon-redshift

I have 2 tables in AWS redshift. The details are as below
a) impressions (to count the number of impressions of a particular ad)
Number of rows (170 million)
distribution key(ad_campaign)
sort key (created_on)
b) clicks (to count the number of clicks of a particular ad).
Number of rows (80 million)
distribution key(ad_campaign)
sort key (created_on)
I have a single DC1 Large cluster with 2 slices.
I am trying to run the below query
select impressions.offer_id, count(imp_cnt) from
bidsflyer.tblImpressionLog_Opt impressions
full join bidsflyer.tblTrackingLinkLog_Opt clicks
on impressions.offer_id=clicks.offer_id and date_trunc('week',
impressions.created_on)=date_trunc('week', clicks.created_on)
where impressions.created_on >= '2017-07-27 00:00:00'
group by 1
This query takes more then 8 mins to run. I think this is quite large considering the volume of data, which I feel is not huge.
The query plan looks like something below
XN HashAggregate (cost=2778257688268.43..2778257688268.60 rows=67 width=12)
-> XN Hash Left Join DS_DIST_NONE (cost=179619.84..2778170875920.65 rows=17362469555 width=12)
Hash Cond: (("outer".offer_id = "inner".offer_id) AND (date_trunc('week'::text, "outer".created_on) = date_trunc('week'::text, "inner".created_on)))
-> XN Seq Scan on tblimpressionlog_opt impressions (cost=0.00..724967.36 rows=57997389 width=20)
Filter: (created_on >= '2017-07-27 00:00:00'::timestamp without time zone)
-> XN Hash (cost=119746.56..119746.56 rows=11974656 width=12)
-> XN Seq Scan on tbltrackinglinklog_opt clicks (cost=0.00..119746.56 rows=11974656 width=12)
Can anyone provide me guidance of the correct usage of distribution key and sort keys.
How should I design my query?

Table setup:
1) According to the plan, the most expensive operation is grouping by offer_id. This makes sense because you didn't sort or distribute your data by offer_id. Your tables are quite large, so you can recreate the table with an interleaved sort key by (offer_id,created_on) (interleaved keys are supposed to give equal and order-independent weight to the included columns and are known to have positive effect on larger tables).
2) If you join by weeks you can materialize your week column (create a physical column and populate it with date_trunc output). That might save you some computation effort to get these values dynamically during the join. However, this operation is cheap and if your table is already sorted by timestamp column Redshift might already scan the appropriate blocks only. Also, if each offer runs for a short period of time (meaning offer column has high cardinality and high correlation with time column) you can have a compound sort key by (offer_id,week_created) that will allow merge join that is faster, and aggregate will fun fast as well.
3) if you don't use ad_campaign in other queries you can distribute both tables by offer_id. Having join column in distribution key is a good practice, it's unlikely that your query will benefit from this since you have a single node and distribution style mostly affects multinode setups.
All recommendations are just the assumptions without knowing the exact nature of your data, they require running benchmarks (create table with the recommended configuration, copy data, vaccuum, analyze, run the same query at least 3 times and compare times with the original setup). I would appreciate if you do this and post results here.
RE the query itself, you can replace FULL JOIN with JOIN because you don't need it. FULL JOIN should be used when you want to get not only the intersection of both tables but also impressions that don't have related clicks and vice versa. Which doesn't seem the case because you are filtering by impressions.created_on and group by impressions.offer_id. So, all you need is just the intersection. Replacing FULL JOIN by simple JOIN also might affect query performance. If you want to see the offers that have zero clicks you can use LEFT JOIN.

Merge join is faster than hash join, you should try to achieve merge join. You sort key looks okay, but is your data actually sorted? Redshift does not automatically keep table's rows sorted by sort key, there is no way for redshift to perform merge join on your table. Running a full vacuum on the table, redshift will start performing merge join.
select * from svv_table_info where table = 'impressions'
select * from svv_table_info where table = 'clicks'
Use above query to check the amount of unsorted data you have in your table.
Run a full vacuum on both your tables. Depending on the amount of unsorted data this might take a while and use a lot of your cluster resource.
VACUUM impressions to 100 percent
VACUUM clicks to 100 percent
If I’ve made a bad assumption please comment and I’ll refocus my answer.

Related

How to optimize the following query by adding more indexes?

I am trying to optimize a query which has been destroying my DB.
https://explain.depesz.com/s/isM1
If you have any insights into how to make this better please let me know.
We are using RDS/Postgres 11.9
explain analyze SELECT "src_rowdifference"."key",
"src_rowdifference"."port_id",
"src_rowdifference"."shipping_line_id",
"src_rowdifference"."container_type_id",
"src_rowdifference"."shift_id",
"src_rowdifference"."prev_availability_id",
"src_rowdifference"."new_availability_id",
"src_rowdifference"."date",
"src_rowdifference"."prev_last_update",
"src_rowdifference"."new_last_update"
FROM "src_rowdifference"
INNER JOIN "src_containertype" ON ("src_rowdifference"."container_type_id" = "src_containertype"."key")
WHERE ("src_rowdifference"."container_type_id" IN
(SELECT U0."key"
FROM "src_containertype" U0
INNER JOIN "notification_tablenotification_container_types" U1 ON (U0."key" = U1."containertype_id")
WHERE U1."tablenotification_id" = 'test#test.com')
AND "src_rowdifference"."new_last_update" >= '2020-01-15T03:11:06.291947+00:00'::timestamptz
AND "src_rowdifference"."port_id" IN
(SELECT U0."key"
FROM "src_port" U0
INNER JOIN "notification_tablenotification_ports" U1 ON (U0."key" = U1."port_id")
WHERE U1."tablenotification_id" = 'test#test.com')
AND "src_rowdifference"."shipping_line_id" IN
(SELECT U0."key"
FROM "src_shippingline" U0
INNER JOIN "notification_tablenotification_shipping_lines" U1 ON (U0."key" = U1."shippingline_id")
WHERE U1."tablenotification_id" = 'test#test.com')
AND "src_rowdifference"."prev_last_update" IS NOT NULL
AND NOT ("src_rowdifference"."prev_availability_id" = 'na'
AND "src_rowdifference"."prev_availability_id" IS NOT NULL)
AND NOT ("src_rowdifference"."key" IN
(SELECT V1."rowdifference_id"
FROM "notification_tablenotificationtrigger_row_differences" V1
WHERE V1."tablenotificationtrigger_id" IN
(SELECT U0."id"
FROM "notification_tablenotificationtrigger" U0
WHERE U0."notification_id" = 'test#test.com'))));
All my indexes are btree + btree(varchar_pattern_ops)
"src_rowdifference_port_id_shipping_line_id_9b3465fc_uniq" UNIQUE CONSTRAINT, btree (port_id, shipping_line_id, container_type_id, shift_id, date, new_last_update)
Edit: A little unrelated change that I made was added some more ssd disk space to my RDS instance. That made a huge difference to the CPU usage and in turn made a huge difference to the number of connections we have.
It is hard to think about the plan as a whole, as I don't understand what it is looking for. But looking at the individual pieces, there are two which together dominate the run time.
One is the index scan on src_rowdifference_port_id_shipping_line_id_9b3465fc, which seems pretty slow given the number of rows returned. Comparing the Index Condition to the index columns, I can see that the condition on new_last_update cannot be applied efficiently in the index because two columns in the index come before it and have no equality conditions in the node. So instead that >= is applied as an "in-index filter" where it needs to test each row and reject it, rather than just skipping it in bulk. I don't know how many rows that removes as the "Rows Removed by Filter" does not count in-index filters, but it is potentially large. So one thing to try would be to make a new index on (port_id, shipping_line_id, container_type_id, new_last_update). Or maybe replace that index with a reordered version (port_id, shipping_line_id, container_type_id, new_last_update, shift_id, date) but of course that might make some other query worse.
The other time consuming thing is kicking the materialized node 47 thousand times (each one looping over up to 22 thousand rows) to implement NOT (SubPlan 1). That should be using a hashed subplan, rather than a linear searched subplan. The only reason I can think of that it not doing the hashed subplan is that work_mem is not large enough to anticipate fitting it into memory. What is your setting for work_mem? What happens if you bump it up to "100MB" or so?
The NOT (SubPlan 1) from the EXPLAIN corresponds to the part of your query AND NOT ("src_rowdifference"."key" IN (...)). If bumping up work_mem doesn't work, you could try rewriting that into a NOT EXISTS clause instead.

Inner join on tables with 50M and 30K entries

I have two tables A and B. A contains 50 million entries and B contains just 30 thousand. I have created default indexes (B-tree) on the columns used to join the tables. The join field is of type character varying.
I am querying the database with this query:
SELECT count(*)
from B INNER JOIN A
ON B.id = A.id;
The execution time of the above query is approximately 8 seconds. When I saw the execution plan, the planner applies a sequential scan to table A scanning all the 50 million entries (this is taking most of the time) and an index scan on table B.
How can I speed up the query?
You cannot speed up this query if you want an exact result.
The most efficient join strategy will probably be a hash or merge join, depending on your work_mem setting.
You might be able to get some speed improvement with an index only scan; try to VACUUM both tables before querying.
The only tuning method would be to make sure both tables are cached in RAM.
There are ways to get estimated counts, see my blog for details.

Selecting primary key:Why postgres prefers to do sequential scan vs index scan

I have the following table
create table log
(
id bigint default nextval('log_id_seq'::regclass) not null
constraint log_pkey
primary key,
level integer,
category varchar(255),
log_time timestamp,
prefix text,
message text
);
It contains like 3 million of rows.
I'm comparing the following queries:
EXPLAIN SELECT id
FROM log
WHERE log_time < now() - INTERVAL '3 month'
LIMIT 100000
which yields the following plan:
Limit (cost=0.00..19498.87 rows=100000 width=8)
-> Seq Scan on log (cost=0.00..422740.48 rows=2168025 width=8)
Filter: (log_time < (now() - '3 mons'::interval))
And the same query with ORDER BY id instruction added:
EXPLAIN SELECT id
FROM log
WHERE log_time < now() - INTERVAL '3 month'
ORDER BY id ASC
LIMIT 100000
which yields
Limit (cost=0.43..25694.15 rows=100000 width=8)
-> Index Scan using log_pkey on log (cost=0.43..557048.28 rows=2168031 width=8)
Filter: (log_time < (now() - '3 mons'::interval))
I have the following questions:
The absence of ORDER BY instruction allows Postgres not to care about the order of rows. They may be as well delivered sorted. Why it does not use index without ORDER BY?
How can Postgres use index in the first place in such a query? WHERE clause of the query contains a non-indexed column and to fetch that column, sequential database scan will be required, but the query with ORDER BY doesn't indicate that.
The Postgres manual page says:
For a query that requires scanning a large fraction of the table, an explicit sort is likely to be faster than using an index because it requires less disk I/O due to following a sequential access pattern
Can you please clarify this statement for me? Index is always ordered. And reading an ordered structure is always faster, it is always a sequential access (at least in terms of page scanning) than reading non-ordered data and then ordering it manually.
Can you please clarify this statement for me? Index is always ordered. And reading an ordered structure is always faster, it is always a sequential access (at least in terms of page scanning) than reading non-ordered data and then ordering it manually.
The index is read sequentially, yes, but postgres needs to follow up with a read of the rows from the table. That is, in most cases, if an index identifies 100 rows, then postgres will need to perform up to 100 random reads against the table.
Internally, the postgres planner weighs sequential and random reads differently, with random reads generally much more expensive. The settings seq_page_cost and random_page_cost determine those. There are other settings you can view and tinker with if you want, though I recommend being very conservative with modifications.
Let's go back to your earlier questions:
The absence of ORDER BY instruction allows Postgres not to care about the order of rows. They may be as well delivered sorted. Why it does not use index without ORDER BY?
The reason is the sort. As you note later, the index doesn't include the constraining column, so it doesn't make any sense to use the index. Instead, the planner is basically saying "read the whole table, figure out which rows conform to the constraint, and then return the first 100000 of them, in whatever order we find them".
The sort changes things. In that case, the planner is saying "we need to sort by this field, and we have an index which is already sorted, so read rows from the table in index order, checking against the constraint, until we have 100000 of them, and return that set".
You'll note that the cost estimates (e.g. '0.43..25694.15') are much higher for the second query -- the planner thinks that doing so many random reads from the index scan is going to cost significantly more than just reading the whole table at once with no sorting.
Hope that helps, and let me know if you have further questions.

Select query with offset limit is too much slow

I have read from internet resources that a query will be slow when the offset increases. But in my case I think its too much slow. I am using postgres 9.3
Here is the query (id is primary key):
select * from test_table offset 3900000 limit 100;
It returns me data in around 10 seconds. And I think its too much slow. I have around 4 million records in table. Overall size of the database is 23GB.
Machine configuration:
RAM: 12 GB
CPU: 2.30 GHz
Core: 10
Few values from postgresql.conf file which I have changed are as below. Others are default.
shared_buffers = 2048MB
temp_buffers = 512MB
work_mem = 1024MB
maintenance_work_mem = 256MB
dynamic_shared_memory_type = posix
default_statistics_target = 10000
autovacuum = on
enable_seqscan = off ## its not making any effect as I can see from Analyze doing seq-scan
Apart from these I have also tried by changing the values of random_page_cost = 2.0 and cpu_index_tuple_cost = 0.0005 and result is same.
Explain (analyze, buffers) result over the query is as below:
"Limit (cost=10000443876.02..10000443887.40 rows=100 width=1034) (actual time=12793.975..12794.292 rows=100 loops=1)"
" Buffers: shared hit=26820 read=378984"
" -> Seq Scan on test_table (cost=10000000000.00..10000467477.70 rows=4107370 width=1034) (actual time=0.008..9036.776 rows=3900100 loops=1)"
" Buffers: shared hit=26820 read=378984"
"Planning time: 0.136 ms"
"Execution time: 12794.461 ms"
How people around the world negotiates with this problem in postgres? Any alternate solution will be helpful for me as well.
UPDATE:: Adding order by id (tried with other indexed column as well) and here is the explain:
"Limit (cost=506165.06..506178.04 rows=100 width=1034) (actual time=15691.132..15691.494 rows=100 loops=1)"
" Buffers: shared hit=110813 read=415344"
" -> Index Scan using test_table_pkey on test_table (cost=0.43..533078.74 rows=4107370 width=1034) (actual time=38.264..11535.005 rows=3900100 loops=1)"
" Buffers: shared hit=110813 read=415344"
"Planning time: 0.219 ms"
"Execution time: 15691.660 ms"
It's slow because it needs to locate the top offset rows and scan the next 100. No amounts of optimization will change that when you're dealing with huge offsets.
This is because your query literally instruct the DB engine to visit lots of rows by using offset 3900000 -- that's 3.9M rows. Options to speed this up somewhat aren't many.
Super-fast RAM, SSDs, etc. will help. But you'll only gain by a constant factor in doing so, meaning it's merely kicking the can down the road until you reach a larger enough offset.
Ensuring the table fits in memory, with plenty more to spare will likewise help by a larger constant factor -- except the first time. But this may not be possible with a large enough table or index.
Ensuring you're doing index-only scans will work to an extent. (See velis' answer; it has a lot of merit.) The problem here is that, for all practical purposes, you can think of an index as a table storing a disk location and the indexed fields. (It's more optimized than that, but it's a reasonable first approximation.) With enough rows, you'll still be running into problems with a larger enough offset.
Trying to store and maintain the precise position of the rows is bound to be an expensive approach too.(This is suggested by e.g. benjist.) While technically feasible, it suffers from limitations similar to those that stem from using MPTT with a tree structure: you'll gain significantly on reads but will end up with excessive write times when a node is inserted, updated or removed in such a way that large chunks of the data needs to be updated alongside.
As is hopefully more clear, there isn't any real magic bullet when you're dealing with offsets this large. It's often better to look at alternative approaches.
If you're paginating based on the ID (or a date field, or any other indexable set of fields), a potential trick (used by blogspot, for instance) would be to make your query start at an arbitrary point in the index.
Put another way, instead of:
example.com?page_number=[huge]
Do something like:
example.com?page_following=[huge]
That way, you keep a trace of where you are in your index, and the query becomes very fast because it can head straight to the correct starting point without plowing through a gazillion rows:
select * from foo where ID > [huge] order by ID limit 100
Naturally, you lose the ability to jump to e.g. page 3000. But give this some honest thought: when was the last time you jumped to a huge page number on a site instead of going straight for its monthly archives or using its search box?
If you're paginating but want to keep the page offset by any means, yet another approach is to forbid the use of larger page number. It's not silly: it's what Google is doing with search results. When running a search query, Google gives you an estimate number of results (you can get a reasonable number using explain), and then will allow you to brows the top few thousand results -- nothing more. Among other things, they do so for performance reasons -- precisely the one you're running into.
I have upvoted Denis's answer, but will add a suggestion myself, perhaps it can be of some performance benefit for your specific use-case:
Assuming your actual table is not test_table, but some huge compound query, possibly with multiple joins. You could first determine the required starting id:
select id from test_table order by id offset 3900000 limit 1
This should be much faster than original query as it only requires to scan the index vs the entire table. Getting this id then opens up a fast index-search option for full fetch:
select * from test_table where id >= (what I got from previous query) order by id limit 100
You didn't say if your data is mainly read-only or updated often. If you can manage to create your table at one time, and only update it every now and then (say every few minutes) your problem will be easy to solve:
Add a new column "offset_id"
For your complete data set ordered by ID, create an offset_id simply by incrementing numbers: 1,2,3,4...
Instead of "offset ... limit 100" use "where offset_id >= 3900000 limit 100"
you can optimise in two steps
First get maximum id out of 3900000 records
select max(id) (select id from test_table order by id limit 3900000);
Then use this maximum id to get the next 100 records.
select * from test_table id > {max id from previous step) order by id limit 100 ;
It will be faster as both queries will do index scan by id.
This way you get the rows in semi-random order. You are not ordering the results in a query, so as a result, you get the data as it is stored in the files. The problem is that when you update the rows, the order of them can change.
To fix that you should add order by to the query. This way the query will return the rows in the same order. What's more then it will be able to use an index to speed the query up.
So two things: add an index, add order by to the query. Both to the same column. If you want to use the id column, then don't add index, just change the query to something like:
select * from test_table order by id offset 3900000 limit 100;
First, you have to define limit and offset with order by clause or you will get inconsistent result.
To speed up the query, you can have a computed index, but only for these condition :
Newly inserted data is strictly in id order
No delete nor update on column id
Here's how You can do it :
Create a row position function
create or replace function id_pos (id) returns bigint
as 'select count(id) from test_table where id <= $1;'
language sql immutable;
Create a computed index on id_pos function
create index table_by_pos on test_table using btree(id_pos(id));
Here's how You call it (offset 3900000 limit 100):
select * from test_table where id_pos(id) >= 3900000 and sales_pos(day) < 3900100;
This way, the query will not compute the 3900000 offset data, but only will compute the 100 data, making it much faster.
Please note the 2 conditions where this approach can take place, or the position will change.
I don't know all of the details of your data, but 4 million rows can be a little hefty. If there's a reasonable way to shard the table and essentially break it up into smaller tables it could be beneficial.
To explain this, let me use an example. let's say that I have a database where I have a table called survey_answer, and it's getting very large and very slow. Now let's say that these survey answers all come from a distinct group of clients (and I also have a client table keeping track of these clients). Then something I could do is I could make it so that I have a table called survey_answer that doesn't have any data in it, but is a parent table, and it has a bunch of child tables that actually contain the data the follow the naming format survey_answer_<clientid>, meaning that I'd have child tables survey_answer_1, survey_answer_2, etc., one for each client. Then when I needed to select data for that client, I'd use that table. If I needed to select data across all clients, I can select from the parent survey_answer table, but it will be slow. But for getting data for an individual client, which is what I mostly do, then it would be fast.
This is one example of how to break up data, and there are many others. Another example would be if my survey_answer table didn't break up easily by client, but instead I know that I'm typically only accessing data over a year period of time at once, then I could potentially make child tables based off of year, such as survey_answer_2014, survey_answer_2013, etc. Then if I know that I won't access more than a year at a time, I only really need to access maybe two of my child tables to get all the data I need.
In your case, all I've been given is perhaps the id. We can break it up by that as well (though perhaps not as ideal). Let's say that we break it up so that there's only about 1000000 rows per table. So our child tables would be test_table_0000001_1000000, test_table_1000001_2000000, test_table_2000001_3000000, test_table_3000001_4000000, etc. So instead of passing in an offset of 3900000, you'd do a little math first and determine that the table that you want is table test_table_3000001_4000000 with an offset of 900000 instead. So something like:
SELECT * FROM test_table_3000001_4000000 ORDER BY id OFFSET 900000 LIMIT 100;
Now if sharding the table is out of the question, you might be able to use partial indexes to do something similar, but again, I'd recommend sharding first. Learn more about partial indexes here.
I hope that helps. (Also, I agree with Szymon Guz that you want an ORDER BY).
Edit: Note that if you need to delete rows or selectively exclude rows before getting your result of 100, then sharding by id will become very hard to deal with (as pointed out by Denis; and sharding by id is not great to begin with). But if your 'just' paginating the data, and you only insert or edit (not a common thing, but it does happen; logs come to mind), then sharding by id can be done reasonably (though I'd still choose something else to shard on).
How about if paginate based on IDs instead of offset/limit?
The following query will give IDs which split all the records into chunks of size per_page. It doesn't depend on were records deleted or not
SELECT id AS from_id FROM (
SELECT id, (ROW_NUMBER() OVER(ORDER BY id DESC)) AS num FROM test_table
) AS rn
WHERE num % (per_page + 1) = 0;
With these from_IDs you can add links to the page. Iterate over :from_ids with index and add the following link to the page:
:from_id_index
When user visits the page retrieve records with ID which is greater than requested :from_id:
SELECT * FROM test_table WHERE ID >= :from_id ORDER BY id DESC LIMIT :per_page
For the first page link with from_id=0 will work
1
To avoid slow pagination with big tables always use auto-increment primary key then use the query below:
SELECT * FROM test_table WHERE id > (SELECT min(id) FROM test_table WHERE id > ((1 * 10) - 10)) ORDER BY id DESC LIMIT 10
1: is the page number
10: is the records per page
Tested and work well with 50 millions records.
There are two simple approaches to solve such a problem
Splitting the query into two subqueries that the first one do all the heavy job on index-only scan as described here
Create calculated index that holds the offset as described here, this can be enhanced using window functions.

Is it true? Does PostgreSQL LIMIT throw away all other instances?

I've been looking for a straight clean answer to the this question. Let's say I have a photo table.
Now this table has 1,000,000 rows. Let's do the following query:
SELECT * FROM photos ORDER BY creation_time LIMIT 10;
Will this query grab all 1,000,000 rows and then give me 10? or does it just grab the latest 10? I'm quite curious as to how this works because if it does grab 1,000,000 (mind you this table is constantly growing) then it's wasteful query. You're basically throwing away 999,980 rows away. Is there a more efficient way to do this?
Whether the database has to scan the whole table or not depends on a number of
factors - in the case you describe the main factors are whether there is an ORDER BY
clause and whether there is an index on the sort field(s).
All is revealed by looking at the query plan, and the cost approximations on each
of the operations. Consider the case where there is no ordering clause:
testdb=> explain select * from bigtable limit 10;
QUERY PLAN
---------------------------------------------------------------------------
Limit (cost=0.00..0.22 rows=10 width=39)
-> Seq Scan on bigtable (cost=0.00..6943.06 rows=314406 width=39)
(2 rows)
The planner has decided that a sequential scan is the way to go. The expected cost
already gives us a clue. It is expressed as a range, 0.00..6943.06. The first number
(0.00) is the amount of work the database expects to have to do before it can deliver
any rows, while the second number is an estimate of the work required to deliver
the whole scan.
Thus, the input to the 'Limit' clause is going to start straight away, and it will
not have to process the full output of the sequential scan (since the total cost
is only 0.22, not 6943.06). So it definitely will not have to read the whole table
and discard most of it.
Now lets see what happens if you add an ORDER BY clause, using a column that is not
indexed.
testdb=> explain select * from bigtable ORDER BY title limit 10;
QUERY PLAN
---------------------------------------------------------------------------------
Limit (cost=13737.26..13737.29 rows=10 width=39)
-> Sort (cost=13737.26..14523.28 rows=314406 width=39)
Sort Key: title
-> Seq Scan on bigtable (cost=0.00..6943.06 rows=314406 width=39)
(4 rows)
We have a similar plan, but there is a 'Sort' operation in between the seq scan
and the limit. It has to scan the complete table, sort the full content of it,
and only then can is start delivering rows to the Limit clause. It makes sense
when you think about it - LIMIT is supposed to apply after ORDER BY; so it would
have to be sure to have found the top 10 rows in the whole table.
Now what happens when an index is used? Suppose we have a 'time' column which is
indexed:
testdb=> explain select * from bigtable ORDER BY time limit 10;
QUERY PLAN
----------------------------------------------------------------------------------------------------------
Limit (cost=0.00..0.35 rows=10 width=39)
-> Index Scan using bigtable_time_idx on bigtable (cost=0.00..10854.96 rows=314406 width=39)
(2 rows)
An index scan, using the time index, is able to start delivering rows in already
sorted order (cost starts at 0.00). The LIMIT can cut the query short after
only 10 rows, so the overall cost is very small.
The moral to the story is to carefully choose which columns or combinations of
columns you will index. You can't add them indiscriminately because adding an
index has a cost of its own - it makes it more expensive to insert, update or
delete records.