foreach loop in scala - scala

In scala foreach loop if I have list
val a = List("a","b","c","d")
I can print them without a pattern matching like this
a.foreach(c => println(c))
But, if I have a tuple like this
val v = Vector((1,9), (2,8), (3,7), (4,6), (5,5))
why should I have to use
v.foreach{ case(i,j) => println(i, j) }
a pattern matching case
{ brackets
Please explain what happens when the two foreach loops are executed.

You don't have to, you choose to. The problem is that the current Scala compiler doesn't deconstruct tuples, you can do:
v.foreach(tup => println(tup._1, tup._2))
But, if you want to be able to refer to each element on it's own with a fresh variable name, you have to resort to a partial function with pattern matching which can deconstruct the tuple.
This is what the compiler does when you use case like that:
def main(args: Array[String]): Unit = {
val v: List[(Int, Int)] = scala.collection.immutable.List.apply[(Int, Int)](scala.Tuple2.apply[Int, Int](1, 2), scala.Tuple2.apply[Int, Int](2, 3));
v.foreach[Unit](((x0$1: (Int, Int)) => x0$1 match {
case (_1: Int, _2: Int)(Int, Int)((i # _), (j # _)) => scala.Predef.println(scala.Tuple2.apply[Int, Int](i, j))
}))
}
You see that it pattern matches on unnamed x0$1 and puts _1 and _2 inside i and j, respectively.

According to http://alvinalexander.com/scala/iterating-scala-lists-foreach-for-comprehension:
val names = Vector("Bob", "Fred", "Joe", "Julia", "Kim")
for (name <- names)
println(name)

To answer #2: You can only use case in braces. A more complete answer about braces is located here.

Vector is working a bit differently, you using function literals using case...
In Scala, we using brackets{} which accept case...
{
case pattern1 => "xxx"
case pattern2 => "yyy"
}
So, in this case, we using it with foreach loop...
Print all values using the below pattern then:
val nums = Vector((1,9), (2,8), (3,7), (4,6), (5,5))
nums.foreach {
case(key, value) => println(s"key: $key, value: $value")
}
Also you can check other loops like for loop as well if you think this is not something which you are comfortable with...

Related

Pattern matching in scala on Seq[Any]

I am not a scala expert but I would like to avoid use of asInstanceOf and replace that with pattern matching for sequences. Following snipped gives me an error non-variable type argument
val seq : Seq[Any] = getSeq();
val rec = seq match {
case rec: Seq[Record[Key, Value]] => rec
case other => throw new Exception(s"Expected a Seq[Record[Key, Value]]")
}
I have following code with asInstanceOf which works, but would like to replace it:
val values = seq.asInstanceOf[Seq[Record[Key, Vrade]]].map(_.value)
You could map the elements to a new list with a type Seq[Record[Key, Vrade]]. So instead of matching the whole sequence, you match on the elements within the list.
It would be something like:
val values = seq.map {
case x: Record[Key, Vrade]] => Some(x);
case _ => None;
};
And then afterwards you can flatten it, or flatmap it to begin with, if you have the variable as List instead og Seq

Simple functionnal way for grouping successive elements? [duplicate]

I'm trying to 'group' a string into segments, I guess this example would explain it more succintly
scala> val str: String = "aaaabbcddeeeeeeffg"
... (do something)
res0: List("aaaa","bb","c","dd","eeeee","ff","g")
I can thnk of a few ways to do this in an imperative style (with vars and stepping through the string to find groups) but I was wondering if any better functional solution could
be attained? I've been looking through the Scala API but there doesn't seem to be something that fits my needs.
Any help would be appreciated
You can split the string recursively with span:
def s(x : String) : List[String] = if(x.size == 0) Nil else {
val (l,r) = x.span(_ == x(0))
l :: s(r)
}
Tail recursive:
#annotation.tailrec def s(x : String, y : List[String] = Nil) : List[String] = {
if(x.size == 0) y.reverse
else {
val (l,r) = x.span(_ == x(0))
s(r, l :: y)
}
}
Seems that all other answers are very concentrated on collection operations. But pure string + regex solution is much simpler:
str split """(?<=(\w))(?!\1)""" toList
In this regex I use positive lookbehind and negative lookahead for the captured char
def group(s: String): List[String] = s match {
case "" => Nil
case s => s.takeWhile(_==s.head) :: group(s.dropWhile(_==s.head))
}
Edit: Tail recursive version:
def group(s: String, result: List[String] = Nil): List[String] = s match {
case "" => result reverse
case s => group(s.dropWhile(_==s.head), s.takeWhile(_==s.head) :: result)
}
can be used just like the other because the second parameter has a default value and thus doesnt have to be supplied.
Make it one-liner:
scala> val str = "aaaabbcddddeeeeefff"
str: java.lang.String = aaaabbcddddeeeeefff
scala> str.groupBy(identity).map(_._2)
res: scala.collection.immutable.Iterable[String] = List(eeeee, fff, aaaa, bb, c, dddd)
UPDATE:
As #Paul mentioned about the order here is updated version:
scala> str.groupBy(identity).toList.sortBy(_._1).map(_._2)
res: List[String] = List(aaaa, bb, c, dddd, eeeee, fff)
You could use some helper functions like this:
val str = "aaaabbcddddeeeeefff"
def zame(chars:List[Char]) = chars.partition(_==chars.head)
def q(chars:List[Char]):List[List[Char]] = chars match {
case Nil => Nil
case rest =>
val (thesame,others) = zame(rest)
thesame :: q(others)
}
q(str.toList) map (_.mkString)
This should do the trick, right? No doubt it can be cleaned up into one-liners even further
A functional* solution using fold:
def group(s : String) : Seq[String] = {
s.tail.foldLeft(Seq(s.head.toString)) { case (carry, elem) =>
if ( carry.last(0) == elem ) {
carry.init :+ (carry.last + elem)
}
else {
carry :+ elem.toString
}
}
}
There is a lot of cost hidden in all those sequence operations performed on strings (via implicit conversion). I guess the real complexity heavily depends on the kind of Seq strings are converted to.
(*) Afaik all/most operations in the collection library depend in iterators, an imho inherently unfunctional concept. But the code looks functional, at least.
Starting Scala 2.13, List is now provided with the unfold builder which can be combined with String::span:
List.unfold("aaaabbaaacdeeffg") {
case "" => None
case rest => Some(rest.span(_ == rest.head))
}
// List[String] = List("aaaa", "bb", "aaa", "c", "d", "ee", "ff", "g")
or alternatively, coupled with Scala 2.13's Option#unless builder:
List.unfold("aaaabbaaacdeeffg") {
rest => Option.unless(rest.isEmpty)(rest.span(_ == rest.head))
}
// List[String] = List("aaaa", "bb", "aaa", "c", "d", "ee", "ff", "g")
Details:
Unfold (def unfold[A, S](init: S)(f: (S) => Option[(A, S)]): List[A]) is based on an internal state (init) which is initialized in our case with "aaaabbaaacdeeffg".
For each iteration, we span (def span(p: (Char) => Boolean): (String, String)) this internal state in order to find the prefix containing the same symbol and produce a (String, String) tuple which contains the prefix and the rest of the string. span is very fortunate in this context as it produces exactly what unfold expects: a tuple containing the next element of the list and the new internal state.
The unfolding stops when the internal state is "" in which case we produce None as expected by unfold to exit.
Edit: Have to read more carefully. Below is no functional code.
Sometimes, a little mutable state helps:
def group(s : String) = {
var tmp = ""
val b = Seq.newBuilder[String]
s.foreach { c =>
if ( tmp != "" && tmp.head != c ) {
b += tmp
tmp = ""
}
tmp += c
}
b += tmp
b.result
}
Runtime O(n) (if segments have at most constant length) and tmp.+= probably creates the most overhead. Use a string builder instead for strict runtime in O(n).
group("aaaabbcddeeeeeeffg")
> Seq[String] = List(aaaa, bb, c, dd, eeeeee, ff, g)
If you want to use scala API you can use the built in function for that:
str.groupBy(c => c).values
Or if you mind it being sorted and in a list:
str.groupBy(c => c).values.toList.sorted

flatMap on a map gives error: wrong number of parameters; expected = 1

I have a map m
val m = Map(1->2, 3->4, 5->6, 7->8, 4->4, 9->9, 10->12, 11->11)
Now i want a map whose keys are equal to the values. So i do this
def eq(k: Int, v: Int) = if (k == v) Some(k->v) else None
m.flatMap((k,v) => eq(k,v))
This gives me the error
error: wrong number of parameters; expected = 1
m.flatMap((k,v) => eq(k,v))
Whats wrong with the above code? flatMap expects a one argument function and here i am passing one argument which is a Pair of integers.
Also this works
m.flatMap {
case (k,v) => eq(k,v)
}
but this does not
m.flatMap {
(k,v) => eq(k,v)
}
Looks like i am missing something. Help?
There is no such syntax:
m.flatMap((k,v) => eq(k,v))
Well, in fact there is such syntax, but actually it is used in functions that accept two arguments (like reduce):
List(1,2,3,4).reduce((acc, x) => acc + x)
The
m.flatMap {
case (k,v) => eq(k,v)
}
syntax works because in fact it is something like this:
val temp: PartialFunction[Tuple2[X,Y], Tuple2[Y,X]] = {
case (k,v) => eq(k,v) // using literal expression to construct function
}
m.flatMap(temp) // with braces ommited
They key thing here is the usage of case word (actually, there is a discussion to enable your very syntax) which turns usual braces expression, like { ... } into full blown anonymous partial function
(If you want to simply fix the error you're getting, see the 2nd solution (with flatMap); if you want a generally nicer solution, read from the beginning.)
What you need instead is filter not flatMap:
def eq(k: Int, v: Int) = k == v
val m = Map(1->2, 3->4, 5->6, 7->8, 4->4, 9->9, 10->12, 11->11)
m.filter((eq _).tupled)
...which of course reduces to just the following, without the need for eq:
m.filter { case (k, v) => k == v }
result:
Map(9 -> 9, 11 -> 11, 4 -> 4)
OR... If you want to stick with flatMap
First you must know that flatMap will pass to your function TUPLES not keys and values as separate arguments.
Additionally, you must change the Option returned by eq to something that can be fed back to flatMap on sequences such as List or Map (actually any GenTraversableOnce to be precise):
def eq(k: Int, v: Int) = if (k == v) List(k -> v) else Nil
m.flatMap { case (k,v) => eq(k,v) } // use pattern matching to unpack the tuple
or the uglier but equivalent:
m.flatMap { x => eq(x._1, x._2) }
alternatively, you can convert eq to take a tuple instead:
m.flatMap((eq _).tupled)
I think that what you want is a single argument that will be a couple, not two arguments. Something like this may work
m.flatMap(k => eq(k._1, k._2))
The code snippet that works uses pattern matching. You give names to both elements of your couple. It's a partial function and can be use here in your flatMap.
You have to do:
m.flatMap { case (k,v) => eq(k,v) }
Note that here I switch to curly braces, which indicates a function block rather than parameters, and the function here is a case statement. This means that the function block I'm passing to flatMap is a partialFunction that is only invoked for items that match the case statement.
Your eq function takes two parameters, that is why you are getting the type error. Try:
def f(p: (Int, Int)) = if (p._1 == p._2) Some(p) else None
m flatMap f

Scala: Generalised method to find match and return match dependant values in collection

I wish to find a match within a List and return values dependant on the match. The CollectFirst works well for matching on the elements of the collection but in this case I want to match on the member swEl of the element rather than on the element itself.
abstract class CanvNode (var swElI: Either[CSplit, VistaT])
{
private[this] var _swEl: Either[CSplit, VistaT] = swElI
def member = _swEl
def member_= (value: Either[CSplit, VistaT] ){ _swEl = value; attach}
def attach: Unit
attach
def findVista(origV: VistaIn): Option[Tuple2[CanvNode,VistaT]] = member match
{
case Right(v) if (v == origV) => Option(this, v)
case _ => None
}
}
def nodes(): List[CanvNode] = topNode :: splits.map(i => List(i.n1, i.n2)).flatten
//Is there a better way of implementing this?
val temp: Option[Tuple2[CanvNode, VistaT]] =
nodes.map(i => i.findVista(origV)).collectFirst{case Some (r) => r}
Do I need a View on that, or will the collectFirst method ensure the collection is only created as needed?
It strikes me that this must be a fairly general pattern. Another example could be if one had a List member of the main List's elements and wanted to return the fourth element if it had one. Is there a standard method I can call? Failing that I can create the following:
implicit class TraversableOnceRichClass[A](n: TraversableOnce[A])
{
def findSome[T](f: (A) => Option[T]) = n.map(f(_)).collectFirst{case Some (r) => r}
}
And then I can replace the above with:
val temp: Option[Tuple2[CanvNode, VistaT]] =
nodes.findSome(i => i.findVista(origV))
This uses implicit classes from 2.10, for pre 2.10 use:
class TraversableOnceRichClass[A](n: TraversableOnce[A])
{
def findSome[T](f: (A) => Option[T]) = n.map(f(_)).collectFirst{case Some (r) => r}
}
implicit final def TraversableOnceRichClass[A](n: List[A]):
TraversableOnceRichClass[A] = new TraversableOnceRichClass(n)
As an introductory side node: The operation you're describing (return the first Some if one exists, and None otherwise) is the sum of a collection of Options under the "first" monoid instance for Option. So for example, with Scalaz 6:
scala> Stream(None, None, Some("a"), None, Some("b")).map(_.fst).asMA.sum
res0: scalaz.FirstOption[java.lang.String] = Some(a)
Alternatively you could put something like this in scope:
implicit def optionFirstMonoid[A] = new Monoid[Option[A]] {
val zero = None
def append(a: Option[A], b: => Option[A]) = a orElse b
}
And skip the .map(_.fst) part. Unfortunately neither of these approaches is appropriately lazy in Scalaz, so the entire stream will be evaluated (unlike Haskell, where mconcat . map (First . Just) $ [1..] is just fine, for example).
Edit: As a side note to this side note: apparently Scalaz does provide a sumr that's appropriately lazy (for streams—none of these approaches will work on a view). So for example you can write this:
Stream.from(1).map(Some(_).fst).sumr
And not wait forever for your answer, just like in the Haskell version.
But assuming that we're sticking with the standard library, instead of this:
n.map(f(_)).collectFirst{ case Some(r) => r }
I'd write the following, which is more or less equivalent, and arguably more idiomatic:
n.flatMap(f(_)).headOption
For example, suppose we have a list of integers.
val xs = List(1, 2, 3, 4, 5)
We can make this lazy and map a function with a side effect over it to show us when its elements are accessed:
val ys = xs.view.map { i => println(i); i }
Now we can flatMap an Option-returning function over the resulting collection and use headOption to (safely) return the first element, if it exists:
scala> ys.flatMap(i => if (i > 2) Some(i.toString) else None).headOption
1
2
3
res0: Option[java.lang.String] = Some(3)
So clearly this stops when we hit a non-empty value, as desired. And yes, you'll definitely need a view if your original collection is strict, since otherwise headOption (or collectFirst) can't reach back and stop the flatMap (or map) that precedes it.
In your case you can skip findVista and get even more concise with something like this:
val temp = nodes.view.flatMap(
node => node.right.toOption.filter(_ == origV).map(node -> _)
).headOption
Whether you find this clearer or just a mess is a matter of taste, of course.

How to extract remainder of sequence in pattern matching

I've obviously done a very poor job of explaining what I'm looking for in my original post so let's try this one more time. What I'm trying to accomplish is the ability to pass a sequence of items, extract one or more of the items, and then pass the REMAINDER of the sequence on to another extractor. Note that by sequence I mean sequence (not necessarily a List). My previous examples used list as the sequence and I gave some examples of extraction using cons (::), but I could just as well pass an Array as my sequence.
I thought I knew how pattern matching and extraction worked but I could be wrong so to avoid any more basic comments and links to how to do pattern matching sites here's my understanding:
If I want to return a single item from my extractor I would define an unapply method. This method takes whatever type I chose as input (the type could be a sequence...) and returns a single optional item (the return type could itself be a sequence). The return must be wrapped in Some if I want a match or None if I don't. Here is an example that takes a sequence as input and returns the same sequence wrapped in Some but only if it contains all Strings. I could very well just return the sequence wrapped in Some and not do anything else, but this seems to cause confusion for people. The key is if it is wrapped in Some then it will match and if it is None it will not. Just to be more clear, the match will also not happen unless the input also matches my unapply methods input type. Here is my example:
object Test {
// In my original post I just returned the Seq itself just to verify I
// had matched but many people commented they didn't understand what I
// was trying to do so I've made it a bit more complicated (e.g. match
// only if the sequence is a sequence of Strings). Hopefully I don't
// screw this up and introduce a bug :)
def unapply[A](xs: Seq[A]): Option[Seq[String]] =
if (xs forall { _.isInstanceOf[String] })
Some(xs.asInstanceOf[Seq[String]])
else
None
}
Using List as an example, I can now perform the following:
// This works
def test1(xs: List[_]) = xs match {
case (s: String) :: Test(rest) =>
println("s = " + s + ", rest = " + rest)
case _ =>
println("no match")
}
test1(List("foo", "bar", "baz")) // "s = foo, rest = List(bar, baz)"
My test1 function takes List as input and extracts the head and tail using cons via the constructor pattern (e.g. ::(s, rest)). It then uses type ascription (: String) to make sure the head (s) is a String. The tail contains List("bar", "baz"). This is a List which means it is also a Seq (sequence). It is then passed as input to my Test extractor which verifies that both "bar" and "baz" are strings and returns the List wrapped in Some. Since Some is returned it is considered a match (although in my original post where I inadvertently mixed up unapplySeq with unapply this didn't work as expected, but that aside...). This is NOT what I'm looking for. This was only an example to show that Test does in fact extract a Seq as input as expected.
Now, here's where I caused mass confusion last time when I inadvertently used unapplySeq instead of unapply in my write up. After much confusion trying to understand the comments that were posted I finally picked up on the mistake. Many thanks to Dan for pointing me in the right direction...
But just be avoid any more confusion, let me clarify my understanding of unapplySeq. Like unapply, unapplySeq takes in whatever argument I choose as input, but instead of returning a single element it returns a sequence of elements. Each item in this sequence can then be used for additional pattern matching. Again, to make a match happen the input type must match and my returned sequence must be wrapped in Some and not be None. When extracting over the sequence of items returned from unapplySeq, you can use _* to match any remaining items not yet matched.
Ok, so my extractor takes a sequence as input and returns a sequence (as a single item) in return. Since I only want to return a single item as a match I need to use unapply NOT unapplySeq. Even though in my case I'm returning a Seq, I don't want unapplySeq because I don't want to do more pattern matching on the items in the Seq. I just want to return the items as a Seq on its own to then be passed to the body of my case match. This sounds confusing, but to those that understand unapply vs unapplySeq I hope it isn't.
So here is what I WANT to do. I want to take something that returns a sequence (e.g. List or Array) and I want to extract a few items from this sequence and then extract the REMAINDER of the items (e.g. _*) as a sequence. Let's call it the remainder sequence. I want to then pass the remainder sequence as input to my extractor. My extractor will then return the remaining items as a single Seq if it matches my criteria. Just to be 100% clear. The List (or Array, etc) will have its unapplySeq extractor called to create the sequence of items. I will extract a one or more of these items and then pass what is left as a sequence to my Test extractor which will use unapply (NOT unapplySeq) to return the remainder. If you are confused by this, then please don't comment...
Here are my tests:
// Doesn't compile. Is there a syntax for this?
def test2(xs: Seq[_]) = xs match {
// Variations tried:
// Test(rest) # _* - doesn't compile (this one seems reasonable to me)
// Test(rest # _*) - doesn't compile (would compile if Test had
// unapplySeq, but in that case would bind List's
// second element to Test as a Seq and then bind
// rest to that Seq (if all strings) - not what I'm
// looking for...). I though that this might work
// since Scala knows Test has no unapplySeq only
// unapply so # _* can be tied to the List not Test
// rest # Test(_*) - doesn't compile (didn't expect to)
case List(s: String, Test(rest) # _*) =>
println("s = " + s + " rest = " + rest)
case _ =>
println("no match")
}
// This works, but messy
def test3(xs: List[_]) = xs match {
case List(s: String, rest # _*) if (
rest match { case Test(rest) => true; case _ => false }
) =>
println("s = " + s + " rest = " + rest)
case _ =>
println("no match")
}
I created test3 based on comments from Julian (thanks Julian..). Some have commented that test3 does what I want so they are confused what I'm looking for. Yes, it accomplishes what I want to accomplish, but I'm not satisfied with it. Daniel's example also works (thanks Daniel), but I'm also not satisfied with having to create another extractor to split things and then do embedded extractions. These solutions seem too much work in order to accomplish something that seems fairly straight forward to me. What I WANT is to make test2 work or know that it can't be done this way. Is the error given because the syntax is wrong? I know that rest # _* will return a Seq, that can be verified here:
def test4(xs: List[_]) = xs match {
case List(s: String, rest # _*) =>
println(rest.getClass) // scala.collection.immutable.$colon$colon
case _ =>
println("no match")
}
It returns cons (::) which is a List which is a Seq. So how can I pass the _* Seq on to my extractor and have is return bound to the variable rest?
Note that I've also tried passing varargs to my unapply constructor (e.g. unapply(xs: A*)...) but that won't match either.
So, I hope it is clear now when I say I want to extract the remainder of a sequence in pattern matching. I'm not sure how else I can word it.
Based on the great feedback from Daniel I'm hoping he is going to have an answer for me :)
I'd like to extract the first item and pass the remainder on to another extractor.
OK. Your test1 does that, exactly. first_item :: Extractor(the_rest). The weird behavior you're seeing comes from your Test extractor. As you already had the answer to your stated question, and as expected behavior from your Test strikes you as a problem with test1, it seems that what you really want is some help with extractors.
So, please read Extractor Objects, from docs.scala-lang.org, and Pattern Matching in Scala (pdf). Although that PDF has an example of unapplySeq, and suggests where you'd want to use it, here are some extra examples:
object Sorted {
def unapply(xs: Seq[Int]) =
if (xs == xs.sortWith(_ < _)) Some(xs) else None
}
object SortedSeq {
def unapplySeq(xs: Seq[Int]) =
if (xs == xs.sortWith(_ < _)) Some(xs) else None
}
Interactively:
scala> List(1,2,3,4) match { case Sorted(xs) => Some(xs); case _ => None }
res0: Option[Seq[Int]] = Some(List(1, 2, 3, 4))
scala> List(4,1,2,3) match { case Sorted(xs) => Some(xs); case _ => None }
res1: Option[Seq[Int]] = None
scala> List(4,1,2,3) match { case first :: Sorted(rest) => Some(first, rest); case _ => None }
res2: Option[(Int, Seq[Int])] = Some((4,List(1, 2, 3)))
scala> List(1,2,3,4) match { case SortedSeq(a,b,c,d) => (a,b,c,d) }
res3: (Int, Int, Int, Int) = (1,2,3,4)
scala> List(4,1,2,3) match { case _ :: SortedSeq(a, b, _*) => (a,b) }
res4: (Int, Int) = (1,2)
scala> List(1,2,3,4) match { case SortedSeq(a, rest # _*) => (a, rest) }
res5: (Int, Seq[Int]) = (1,List(2, 3, 4))
Or maybe -- I only have the faint suspicion of this, you haven't said as much -- you don't want extractor help, but actually you want a terse way to express something like
scala> List(1,2,3,4) match { case 1 :: xs if (xs match { case Sorted(_) => true; case _ => false }) => xs }
res6: List[Int] = List(2, 3, 4)
Erlang has a feature like this (although, without these crazy extractors):
example(L=[1|_]) -> examine(L).
, which pattern-matches the same argument twice - to L and also to [1|_]. In Erlang both sides of the = are full-fledged patterns and could be anything, and you can add a third or more patterns with more =. Scala seems to only support the L=[1|_] form, having a variable and then a full pattern.
scala> List(4,1,2,3) match { case xs # _ :: Sorted(_) => xs }
collection.immutable.::[Int] = List(4, 1, 2, 3)
Well, the easiest way is this:
case (s: String) :: Test(rest # _*) =>
If you need this to work on general Seq, you can just define an extractor to split head from tail:
object Split {
def unapply[T](xs: Seq[T]): Option[(T, Seq[T])] = if (xs.nonEmpty) Some(xs.head -> xs.tail) else None
}
And then use it like
case Split(s: String, Test(rest # _*)) =>
Also note that if you had defined unapply instead of unapplySeq, then # _* would not be required on the pattern matched by Test.
:: is an extractor. For how it works (from a random googling), see, for example, here.
def test1(xs: List[_]) = xs match {
case s :: rest =>
println("s = " + s + " rest = " + rest)
case _ =>
println("no match")
}
scala> test1(List("a", "b", "c"))
s = a rest = List(b, c)
I think this is what you wanted?
Messing around with this, it seems that the issue has something to do with unapplySeq.
object Test {
def unapply[A](xs: List[A]): Option[List[A]] = Some(xs)
}
def test1(xs: List[_]) = xs match {
case (s: String) :: Test(s2 :: rest) =>
println("s = " + s + " rest = " + rest)
case _ =>
println("no match")
}
test1(List("foo", "bar", "baz"))
produces the output:
s = foo rest = List(baz)
I'm havng trouble googling up docs on the difference between unapply and unapplySeq.