I want to find out row and column number of zeros in 3 dimensional space. Problem is I get output vectors(e.g row) of different length each time, hence dimension error occurs.
My attempt:
a (:,:,1)= [1 2 0; 2 0 1; 0 0 2]
a (:,:,2) = [0 2 8; 2 1 0; 0 0 0]
for i = 1 : 2
[row(:,i) colum(:,i)] = find(a(:,:,i)==0);
end
You can use linear indexing:
a (:,:,1) = [1 2 0; 2 0 1; 0 0 2];
a (:,:,2) = [0 2 8; 2 1 0; 0 0 0];
% Answer in linear indexing
idx = find(a == 0);
% Transforms linear indexing in rows-columns-3rd dimension
[rows , cols , third] = ind2sub(size(a) ,idx)
More on the topic can be found in Matlab's help
Lets assume your Matrix has the format N-by-M-by-P.
In your case
N = 3;
M = 3;
P = 2;
This would mean that the maximum length of rows and coloms from your search (if all entries are zero) is N*M=9
So one possible solution would be
%alloc output
row=zeros(size(a,1)*size(a,2),size(a,3));
colum=row;
%loop over third dimension
n=size(a,3);
for i = 1 : n
[row_t colum_t] = find(a(:,:,i)==0);
%copy your current result depending on it's length
row(1:length(row_t),i)=row_t;
colum(1:length(colum_t),i)=colum_t;
end
However, when you past the result to the next function / script you have to keep in mind to operate on the non-zero elements.
I would go for the vectorized solution of Zep. As for bigger matrices a it is more memory efficient and I am sure it must be way faster.
I am trying to implement the paper detection of copy move forgery using histogram of oriented gradients.
The algorithm is:
Divide the image into overlapping blocks.
Calculate feature vectors for each block and store them in a matrix.
Sorting the matrix lexicographically
Using block matching to identify forged regions.
https://www.researchgate.net/publication/276518650_Detection_of_copy-move_image_forgery_using_histogram_of_orientated_gradients
I am stuck with the 3rd step and can't proceed.
The code I have implemented is:
clc;
clear all;
close all;
%read image
img = imread('006_F.png');
img=rgb2gray(img);
img=imresize(img, 1/4);
figure(1);
imshow(img);
b=16; %block size
nrc=5; %no. of rows to check
td=416; %threshold
[r, c]=size(img);%Rows and columns;
column=(r-b+1)*(c-b+1);
M= zeros(column,4);
Mi = zeros(1,2);
i=1;
disp('starting extraction of features');
for r1 = 1:r-b+1
for c1 = 1:c-b+1
% Extract each block
B = img(r1:r1+b-1,c1:c1+b-1);
features = extractHOGFeatures(B);%extracting features
M(i, :) = features;
Mi(i,:) = [r1 c1];
i=i+1;
end
end
[S, index] = sortrows(M , [ 1 2 3 4]);
P= zeros(1,6);
b2=r-b+1;
disp('Finding Duplicates');
for i = 1:column
iv = index(i);
xi=mod(iv,b2) + 1;
yi=ceil(iv/b2);
j = i+1;
while j < column && abs(i - j) < 5
jv=index(j);
xj=mod(jv,b2) + 1;
yj=ceil(jv/b2);
z=sqrt(power(xi-xj,2) + power(yi-yj,2));
% only process those whose size is above Nd
if z > 16
offset = [xi-xj yi-yj];
P = [P;[xi yi xj yj xi-xj yi-yj]];
end
j = j + 1;
end
end
rows = size(P,1);
P(:,6) = P(:,6) - min(P(:,6));
P(:,5) = P(:,5) - min(P(:,5));
maxValP = max(P(:,6)) + 1;
P(:,5) = maxValP .* P(:,5) + P(:,6);
mostfrequentval = mode(P(:,5));
disp('Creating Image');
idx = 2;
% Create a copy of the image and mask it
RI = img;
while idx < rows
x1 = P(idx,1);
y1 = P(idx,2);
x2 = P(idx,3);
y2 = P(idx,4);
if (P(idx,5) == mostfrequentval)
RI(y1:y1,x1:x1) = 0;
RI(y2:y2,x2:x2) = 0;
end
idx = idx + 1;
end;
After going through some references indicated in the paper you are working on (ref. [8] and [20]):
The lexicographic sorting is the equivalent of the alphabetical one, for numbers i.e., [1 1 1 1] < [1 1 2 1] < [2 3 4 5] < [2 4 4 5]
So, in your case, you case use the function sortrows() in the following way:
A = [1 1 1 1;1 1 1 2;1 1 1 4;1 2 2 2; 1 2 2 1; 1 4 6 3; 2 3 4 5; 2 3 6 6]; % sample matrix
[B,idx] = sortrows(A,[1 2 3 4]); % Explicit notation but it is the Matlab default setting so equivalent to sortrows(A)
It means: Sort the rows of A by first looking at the first column and, in case of equality, looking at the second one, and so on.
If your are looking for a reverse order, you specify '-' before the number of the column.
So in the end, your code is good and if the results are not as expected it has to come from another step of the implementation...
Edit: the parameter idx records the original index of the sorted rows.
I have cell array A of dimension m * k.
I want to keep the rows of A unique up to an order of the k cells.
The "tricky" part is "up to an order of the k cells": consider the k cells in the ith row of A, A(i,:); there could be a row j of A, A(j,:), that is equivalent to A(i,:) up to a re-ordering of its k cells, meaning that for example if k=4it could be that:
A{i,1}=A{j,2}
A{i,2}=A{j,3}
A{i,3}=A{j,1}
A{i,4}=A{j,4}
What I am doing at the moment is:
G=[0 -1 1; 0 -1 2; 0 -1 3; 0 -1 4; 0 -1 5; 1 -1 6; 1 0 6; 1 1 6; 2 -1 6; 2 0 6; 2 1 6; 3 -1 6; 3 0 6; 3 1 6];
h=7;
M=reshape(G(nchoosek(1:size(G,1),h),:),[],h,size(G,2));
A=cell(size(M,1),2);
for p=1:size(M,1)
A{p,1}=squeeze(M(p,:,:));
left=~ismember(G, A{p,1}, 'rows');
A{p,2}=G(left,:);
end
%To find equivalent rows up to order I use a double loop (VERY slow).
indices=[];
for j=1:size(A,1)
if ismember(j,indices)==0 %if we have not already identified j as a duplicate
for i=1:size(A,1)
if i~=j
if (isequal(A{j,1},A{i,1}) || isequal(A{j,1},A{i,2}))...
&&...
(isequal(A{j,2},A{i,1}) || isequal(A{j,2},A{i,2}))...
indices=[indices;i];
end
end
end
end
end
A(indices,:)=[];
It works but it is too slow. I am hoping that there is something quicker that I can use.
I'd like to propose another idea, which has some conceptual resemblance to erfan's. My idea uses hash functions, and specifically, the GetMD5 FEX submission.
The main task is how to "reduce" each row in A to a single representative value (such as a character vector) and then find unique entries of this vector.
Judging by the benchmark vs. the other suggestions, my answer doesn't perform as well as one of the alternatives, but I think its raison d'ĂȘtre lies in the fact that it is completely data-type agnostic (within the limitations of the GetMD51), that the algorithm is very straightforward to understand, it's a drop-in replacement as it operates on A, and that the resulting array is exactly equal to the one obtained by the original method. Of course this requires a compiler to get working and has a risk of hash collisions (which might affect the result in VERY VERY rare cases).
Here are the results from a typical run on my computer, followed by the code:
Original method timing: 8.764601s
Dev-iL's method timing: 0.053672s
erfan's method timing: 0.481716s
rahnema1's method timing: 0.009771s
function q39955559
G=[0 -1 1; 0 -1 2; 0 -1 3; 0 -1 4; 0 -1 5; 1 -1 6; 1 0 6; 1 1 6; 2 -1 6; 2 0 6; 2 1 6; 3 -1 6; 3 0 6; 3 1 6];
h=7;
M=reshape(G(nchoosek(1:size(G,1),h),:),[],h,size(G,2));
A=cell(size(M,1),2);
for p=1:size(M,1)
A{p,1}=squeeze(M(p,:,:));
left=~ismember(G, A{p,1}, 'rows');
A{p,2}=G(left,:);
end
%% Benchmark:
tic
A1 = orig_sort(A);
fprintf(1,'Original method timing:\t\t%fs\n',toc);
tic
A2 = hash_sort(A);
fprintf(1,'Dev-iL''s method timing:\t\t%fs\n',toc);
tic
A3 = erfan_sort(A);
fprintf(1,'erfan''s method timing:\t\t%fs\n',toc);
tic
A4 = rahnema1_sort(G,h);
fprintf(1,'rahnema1''s method timing:\t%fs\n',toc);
assert(isequal(A1,A2))
assert(isequal(A1,A3))
assert(isequal(numel(A1),numel(A4))) % This is the best test I could come up with...
function out = hash_sort(A)
% Hash the contents:
A_hashed = cellfun(#GetMD5,A,'UniformOutput',false);
% Sort hashes of each row:
A_hashed_sorted = A_hashed;
for ind1 = 1:size(A_hashed,1)
A_hashed_sorted(ind1,:) = sort(A_hashed(ind1,:));
end
A_hashed_sorted = cellstr(cell2mat(A_hashed_sorted));
% Find unique rows:
[~,ia,~] = unique(A_hashed_sorted,'stable');
% Extract relevant rows of A:
out = A(ia,:);
function A = orig_sort(A)
%To find equivalent rows up to order I use a double loop (VERY slow).
indices=[];
for j=1:size(A,1)
if ismember(j,indices)==0 %if we have not already identified j as a duplicate
for i=1:size(A,1)
if i~=j
if (isequal(A{j,1},A{i,1}) || isequal(A{j,1},A{i,2}))...
&&...
(isequal(A{j,2},A{i,1}) || isequal(A{j,2},A{i,2}))...
indices=[indices;i];
end
end
end
end
end
A(indices,:)=[];
function C = erfan_sort(A)
STR = cellfun(#(x) num2str((x(:)).'), A, 'UniformOutput', false);
[~, ~, id] = unique(STR);
IC = sort(reshape(id, [], size(STR, 2)), 2);
[~, col] = unique(IC, 'rows');
C = A(sort(col), :); % 'sort' makes the outputs exactly the same.
function A1 = rahnema1_sort(G,h)
idx = nchoosek(1:size(G,1),h);
%concatenate complements
M = [G(idx(1:size(idx,1)/2,:),:), G(idx(end:-1:size(idx,1)/2+1,:),:)];
%convert to cell so A1 is unique rows of A
A1 = mat2cell(M,repmat(h,size(idx,1)/2,1),repmat(size(G,2),2,1));
1 - If more complicated data types need to be hashed, one can use the DataHash FEX submission instead, which is somewhat slower.
Stating the problem: The ideal choice in identifying unique rows in an array is to use C = unique(A,'rows'). But there are two major problems here, preventing us from using this function in this case. First is that you want to count in all the possible permutations of each row when comparing to other rows. If A has 5 columns, it means checking 120 different re-arrangements per row! Sounds impossible.
The second issue is related to unique itself; It does not accept cells except cell arrays of character vectors. So you cannot simply pass A to unique and get what you expect.
Why looking for an alternative? As you know, because currently it is very slow:
With nested loop method:
------------------- Create the data (first loop):
Elapsed time is 0.979059 seconds.
------------------- Make it unique (second loop):
Elapsed time is 14.218691 seconds.
My solution:
Generate another cell array containing same cells, but converted to string (STR).
Find the index of all unique elements there (id).
Generate the associated matrix with the unique indices and sort rows (IC).
Find unique rows (rows).
Collect corresponding rows of A (C).
And this is the code:
disp('------------------- Create the data:')
tic
G = [0 -1 1; 0 -1 2; 0 -1 3; 0 -1 4; 0 -1 5; 1 -1 6; 1 0 6; ...
1 1 6; 2 -1 6; 2 0 6; 2 1 6; 3 -1 6; 3 0 6; 3 1 6];
h = 7;
M = reshape(G(nchoosek(1:size(G,1),h),:),[],h,size(G,2));
A = cell(size(M,1),2);
for p = 1:size(M,1)
A{p, 1} = squeeze(M(p,:,:));
left = ~ismember(G, A{p,1}, 'rows');
A{p,2} = G(left,:);
end
STR = cellfun(#(x) num2str((x(:)).'), A, 'UniformOutput', false);
toc
disp('------------------- Make it unique (vectorized):')
tic
[~, ~, id] = unique(STR);
IC = sort(reshape(id, [], size(STR, 2)), 2);
[~, col] = unique(IC, 'rows');
C = A(sort(col), :); % 'sort' makes the outputs exactly the same.
toc
Performance check:
------------------- Create the data:
Elapsed time is 1.664119 seconds.
------------------- Make it unique (vectorized):
Elapsed time is 0.017063 seconds.
Although initialization needs a bit more time and memory, this method is extremely faster in finding unique rows with the consideration of all permutations. Execution time is almost insensitive to the number of columns in A.
It seems that G is a misleading point.
Here is result of nchoosek for a small number
idx=nchoosek(1:4,2)
ans =
1 2
1 3
1 4
2 3
2 4
3 4
first row is complement of the last row
second row is complement of one before the last row
.....
so if we extract rows {1 , 2} from G then its complement will be rows {3, 4} and so on. In the other words if we assume number of rows of G to be 4 then G(idx(1,:),:) is complement of G(idx(end,:),:).
Since rows of G are all unique then all A{m,n}s always have the same size.
A{p,1} and A{p,2} are complements of each other. and size of unique rows of A is size(idx,1)/2
So no need to any loop or further comparison:
h=7;
G = [0 -1 1; 0 -1 2; 0 -1 3; 0 -1 4; 0 -1 5; 1 -1 6; 1 0 6; ...
1 1 6; 2 -1 6; 2 0 6; 2 1 6; 3 -1 6; 3 0 6; 3 1 6];
idx = nchoosek(1:size(G,1),h);
%concatenate complements
M = [G(idx(1:size(idx,1)/2,:).',:), G(idx(end:-1:size(idx,1)/2+1,:).',:)];
%convert to cell so A1 is unique rows of A
A1 = mat2cell(M,repmat(h,size(idx,1)/2,1),repmat(size(G,2),2,1));
Update: Above method works best however if the idea is to get A1 from A other than G I suggest following method based of erfan' s. Instead of converting array to string we can directly work with the array:
STR=reshape([A.'{:}],numel(A{1,1}),numel(A)).';
[~, ~, id] = unique(STR,'rows');
IC = sort(reshape(id, size(A, 2),[]), 1).';
[~, col] = unique(IC, 'rows');
C1 = A(sort(col), :);
Since I use Octave I can not currently run mex file then I cannot test Dev-iL 's method
Result:
erfan method (string): 4.54718 seconds.
rahnema1 method (array): 0.012639 seconds.
Online Demo
I've a series of coordinates (i,j) and I want to loop through each one.
For example
A = ones(3,3);
i = [1 2 3];
j = [3 2 1];
I tried with this but it doesn't work:
for (i = i && j = j)
A(i,j) = 0;
end
I also tried this but it doens't work as expected:
for i = i
for j = j
A(i,j) = 0;
end
end
Desired result:
A =
1 1 0
1 0 1
0 1 1
Although A is a matrix in this example, I am working with table data.
The correct syntax to do what you want is:
A = ones(3,3);
i = [1 2 3];
j = [3 2 1];
for ii = 1:length( i )
A( i(ii) , j(ii) ) = 0;
end
Essentially you loop through each element and index i and j accordingly using ii. ii loops through 1..3 indexing each element.
This will give the a final result below.
>> A
A =
1 1 0
1 0 1
0 1 1
While this works and fixes your issue, I would recommend rayryeng's alternate solution with conversions if you don't have more complex operations involved.
Though this doesn't answer your question about for loops, I would avoid using loops all together and create column-major linear indices to access into your matrix. Use sub2ind to help facilitate that. sub2ind takes in the size of the matrix in question, the row locations and column locations. The output will be an array of values that specify the column-major locations to access in your matrix.
Therefore:
A = ones(3); i = [1 2 3]; j = [3 2 1]; %// Your code
%// New code
ind = sub2ind(size(A), i, j);
A(ind) = 0;
Given that you have a table, you can perhaps convert the table into an array, apply sub2ind on this array then convert the result back to a table when you're done. table2array and array2table are useful tools here. Given that your table is stored in A, you can try:
Atemp = table2array(A);
ind = sub2ind(size(Atemp), i, j);
Atemp(ind) = 0;
A = array2table(Atemp);
I know this is a simple question but difficult to formulate in one sentence to google the answer.So, I have a 3d matrix with size 2x2x3 like this
A(:,:,1) =[1 1; 1 1];
A(:,:,2) =[2 2; 2 2];
A(:,:,3) =[4 4; 4 4];
and matrix B with size 2x2
B = [ 1 2; 2 3];
What i need is to chose from each third dimension in A just one number using matrix B:
for i=1:2,
for j=1:2,
C(i,j) = A(i,j,B(i,j));
end
end
How to that in one line without a loop?
Not really a single line, but without a loop:
[I J] = ind2sub (size(B), 1:numel(B));
linInd = sub2ind (size (A), I, J, B(:)');
C = reshape (A(linInd), size(B));
Here is another variation:
[r,c,~] = size(A);
[J,I] = meshgrid(1:size(B,1), 1:size(B,2));
idx = reshape(I(:) + r*(J(:)-1) + r*c*(B(:)-1), size(B));
C = A(idx)