I am using a pressure sensor D6F-PH to measure the pressure difference. This is my Arduino code that I wrote to get the values from the sensor.
#include "Wire.h"
#define addrs 0x6C // I2C bus address
int P;
int I;
float T;c
int initialize(int i2c_addr)
{
//INITIALIZATION AFTER POWER UP
Wire.beginTransmission(i2c_addr);
Wire.write(0x0B);
Wire.write(0x00);
int x = Wire.endTransmission();
return x;
}
int pressure(int i2c_addr)
{
//MCU MODE
Wire.beginTransmission(i2c_addr);
Wire.write(0x00);
Wire.write(0xD0); // reg 0 - address register high byte
// Wire.write(0x51); // reg 1 - address register low byte
Wire.write(0x40); // reg 1 - address register low byte
Wire.write(0x18); // reg 2 - serial control register - indicate # bytes among others (page 7 bottom)
Wire.write(0x06); // reg 3 - value to be written to SENS control register
int x = Wire.endTransmission();
delay(33);
//WRITE
Wire.beginTransmission(i2c_addr);
Wire.write(0x00);
Wire.write(0xD0);
Wire.write(0x51);
Wire.write(0x2C);
x = Wire.endTransmission();
//READ
Wire.beginTransmission(i2c_addr);
Wire.write(0x07);
x = Wire.endTransmission();
Wire.requestFrom(i2c_addr, 2);
byte hibyte = Wire.read();
byte lobyte = Wire.read();
long raw = word( hibyte, lobyte);
//Serial.print("raw pressure:\t ");
Serial.println(raw);
// D6F-PH5050AD3 ==> rangeMode=500 ==> int rd_pressure = ((raw - 1024) * rangeMode * 2 / 60000L) - rangeMode
// D6F-PH0505AD3 ==> rangeMode=50 ==> int rd_pressure = ((raw - 1024) * rangeMode * 2 / 60000L) - rangeMode
// D6F-PH0025AD1 ==> rangeMode=250 ==> int rd_pressure=(raw - 1024) * rangeMode / 60000L
//int rangeMode = 50;
int rangeMode = 250;
int rd_pressure = (raw - 1024) * rangeMode / 60000L;
//int rd_pressure = ((raw - 1024) * rangeMode * 10/60000L) - rangeMode;
return rd_pressure;
}
float temperature(int i2c_addr)
{
//MCU MODE
Wire.beginTransmission(i2c_addr);
Wire.write(0x00);
Wire.write(0xD0); // reg 0 - address register high byte
// Wire.write(0x51); // reg 1 - address register low byte
Wire.write(0x40); // reg 1 - address register low byte
Wire.write(0x18); // reg 2 - serial control register - indicate # bytes among others (page 7 bottom)
Wire.write(0x06); // reg 3 - value to be written to SENS control register
int x = Wire.endTransmission();
delay(33);
//WRITE
Wire.beginTransmission(i2c_addr);
Wire.write(0x00);
Wire.write(0xD0);
Wire.write(0x61);
Wire.write(0x2C);
x = Wire.endTransmission();
//READ
Wire.beginTransmission(i2c_addr);
Wire.write(0x07);
x = Wire.endTransmission();
Wire.requestFrom(i2c_addr, 2);
byte hibyte = Wire.read();
byte lobyte = Wire.read();
long raw = word( hibyte, lobyte);
//Serial.print("raw temperature:\t ");
//Serial.println(raw);
int temp = round((float)(raw - 10214) / 3.739); // this is the temperature multiplied by 10...
return (temp / 10.0); // ...and the function returs the float
temperature with 0.1°C resolution
}
void setup()
{ // Open serial communications
Wire.begin();
Serial.begin(9600);
I = initialize (addrs); // start wire connection
}
void loop()
{
P = pressure(addrs);
Serial.print("pressure:\t ");
Serial.println(P);
T = temperature(addrs);
Serial.print("temperature:\t ");
Serial.println(T);
delay(300); //delay for 30 seconds
}
I can measure the pressure and the temperature from the arduino uno board using the Serial Monitor.
When I try to Retrieve the data using MATLAB I am unable to do so.
s=serial('COM6','BaudRate',9600);
fopen(s);
This is the error message that I get when I try to open the port : Error using serial/fopen (line 72)
Open failed: Cannot connect to the COM2 port. Possible reasons are another
application is connected to the port or the port does not exist.
I have checked the COM port number and also used the delete(instrfindall); command but to no avail.
Please help
Resolved. I needed to close the Serial Monitor before creating a connection with MATLAB.
Related
Im trying to generate sinusoidal signal with STM32f767 and DAC8412. DAC have 12 bit data bus and 2 bit address to select one of the four analog outputs. I've configuried FMC in CubeIDE for a SRAM memory with 16 bit data and 2 bit addres. I was able to create buffer with 4096 integer values of sin(). Then i've tried to write them to addres 0x60000000, but it only writes 4 values. After that, program goes to HardFault_Handler().
#define SRAM_BANK_ADDR ((uint32_t)0x60000000)
#define RESOLUTION_T ((uint32_t)0x1000)
#define RESOLUTION_Y ((uint32_t)0x1000)
uint32_t aTxBuffer[RESOLUTION_T];
uint32_t address = SRAM_BANK_ADDR;
Thats how i try to send data to DAC:
for (uint32_t i = 0; i<RESOLUTION_T; i++ )
{
*(__IO uint32_t*) address = aTxBuffer[i];
}
Thats how i fill buffer:
static void Fill_Buffer(uint32_t *pBuffer, uint32_t res_T, uint32_t res_Y)
{
uint32_t tmpIndex = 0;
double sinVal;
/* Put in global buffer different values */
for (tmpIndex = 0; tmpIndex < res_T; tmpIndex++ )
{
sinVal = round((sin(M_TWOPI*tmpIndex/res_T)+1)*res_Y/2);
pBuffer[tmpIndex] = sinVal;
}
}
I am using the STM32F103C8T6. I use the ADC for multi-channel voltage acquisition, and a potentiometer to control the voltage change. I find that the ADC value changes fluctuate. Why?
This is part of my ADC code:
uint32_t ADC_Get_Average(uint8_t ch,uint8_t times)
{
ADC_ChannelConfTypeDef sConfig;
uint32_t value_sum=0;
uint8_t i;
switch(ch)
{
case 1:sConfig.Channel = ADC_CHANNEL_1;break;
case 2:sConfig.Channel = ADC_CHANNEL_2;break;
case 3:sConfig.Channel = ADC_CHANNEL_3;break;
}
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfig.Rank = 1;
HAL_ADC_ConfigChannel(&hadc1,&sConfig);
for(i=0;i<times;i++)
{
HAL_ADC_Start(&hadc1);
HAL_ADC_PollForConversion(&hadc1,5);
value_sum += HAL_ADC_GetValue(&hadc1);
HAL_ADC_Stop(&hadc1);
}
return value_sum/times;
}
void ADC_PROC(void)
{
ADC_value1 = ADC_Get_Average(1,5) / 4096.0 * 3.3;
ADC_value2 = ADC_Get_Average(2,5) / 4096.0 * 3.3;
ADC_value3 = ADC_Get_Average(3,5) / 4096.0 * 3.3;
sprintf(adcbuff1, "V1:%.2fV", ADC_value1);
oled_show_string(24, 0, adcbuff1, 2);
sprintf(adcbuff2, "V2:%.2fV", ADC_value2);
oled_show_string(24, 2, adcbuff2, 2);
sprintf(adcbuff3, "V3:%.2fV", ADC_value3);
oled_show_string(24, 4, adcbuff3, 2);
}
enter image description here
I have tried to change the length of ADC's acquisition cycle side, but the effect is still the same, with severe fluctuations.
I've made a project based on ATSAMG55J19 MCU, programmed with Atmel Studio and ASF 3
Now i'm trying to add an external RTC clock, because internal SAMg55 rtc does not have a backup battery.
The module will be used to read current time after power failure, then i'll use internal RTC, so i need only basic communication. No need to write specific data in EEPROM or setting alarms.
I have a MCP79411, connected via i2c, but there aren't any library suitable for this MCU that uses ASF TWI library.
There are many Arduino implementation, but they uses Wire.h library, and i can't port it.
I made an attempt porting this simple "driver": https://www.ccsinfo.com/forum/viewtopic.php?t=54105
Here is some code
static void i2c_start(void){
static twi_options_t ext3_twi_options;
flexcom_enable(FLEXCOM4);
flexcom_set_opmode(FLEXCOM4, FLEXCOM_TWI);
ext3_twi_options.master_clk = sysclk_get_cpu_hz();
ext3_twi_options.speed = 100000;
ext3_twi_options.smbus = 0;
twi_master_init(TWI4, &ext3_twi_options);
}
// Init Real Time Clock
void rtc_Init(void)
{
uint8_t seconds = 0;
i2c_start();
twi_write_byte(TWI4, ADDR_RTCC_WRITE); // WR to RTC
twi_write_byte(TWI4, ADDR_SEC); // REG 0
twi_write_byte(TWI4, ADDR_RTCC_READ); // RD from RTC
seconds = bcd2bin(i2c_read(0)); // Read current "seconds" in rtc
//i2c_stop();
//seconds &= 0x7F;
seconds |= 0x80; //set to 1 bit 7 of seconds(ST) enabling oscillator
delay_us(3);
twi_write_byte(TWI4, ADDR_RTCC_WRITE); // WR to RTC
twi_write_byte(TWI4, ADDR_SEC); // REG 0
twi_write_byte(TWI4, bin2bcd(seconds) | 0x80); // Start oscillator with current "seconds value
twi_write_byte(TWI4, ADDR_RTCC_WRITE); // WR to RTC
twi_write_byte(TWI4, 0x07); // Control Register
twi_write_byte(TWI4, 0x80); // Disable squarewave output pin
//i2c_stop();
}
Then i tried rtc_set_date_time(uint8_t day, uint8_t mth, uint8_t year, uint8_t dow, uint8_t hr, uint8_t min, uint8_t sec)
and
void rtc_get_time(uint8_t &hr, uint8_t &min, uint8_t &sec)
{
twi_write_byte(TWI4, ADDR_RTCC_WRITE);
twi_write_byte(TWI4, 0x00);
twi_write_byte(TWI4, ADDR_RTCC_READ);
sec = bcd2bin(twi_read_byte(TWI4) & 0x7f); //0x7f b01111111
min = bcd2bin(twi_read_byte(TWI4) & 0x7f); //0x7f
hr = bcd2bin(twi_read_byte(TWI4) & 0x3f); //0x3f b00111111
//i2c_stop();
}
But i always get "0" bytes.
i could not understand the correct way to open communication and read bytes from i2c.
The only reference i found is http://asf.atmel.com/docs/latest/sam.drivers.twi.twi_eeprom_example.samg53_xplained_pro/html/index.html but it seems to be a very different type of communication.
What is the correct way to send and receive that bytes via i2c?
I managed to get and set data. I post a draft of library:
#include "asf.h"
#include "conf_board_3in4out.h"
#include "external_rtc.h"
#include <time.h>
//#include <time_utils.h>
twi_packet_t packet_tx, packet_rx;
// helper functions to manipulate BCD and binary to integers
static int bcd2dec(char r_char)
{
MSN = (r_char & 0xF0)/16;
LSN = r_char & 0x0F;
return(10*MSN + LSN);
}
static char msn(char tim)
{
return (tim & 0xF0)/16;
}
static char lsn(char tim)
{
return (tim & 0x0F);
}
#define RTC_ADDR 0x6F // 7 bits
char config_t[10];
char config_2[8];
char tim_read[8];
#define ADDR_SEC 0x00 // address of SECONDS register
#define ADDR_MIN 0x01 // address of MINUTES register
#define ADDR_HOUR 0x02 // address of HOURS register
#define ADDR_DAY 0x03 // address of DAY OF WEEK register
#define ADDR_STAT 0x03 // address of STATUS register
#define ADDR_DATE 0x04 // address of DATE register
#define ADDR_MNTH 0x05 // address of MONTH register
#define ADDR_YEAR 0x06 // address of YEAR register
#define ADDR_CTRL 0x07 // address of CONTROL register
#define ADDR_CAL 0x08 // address of CALIB register
#define ADDR_ULID 0x09 // address of UNLOCK ID register
#define ADDR_SAVtoBAT_MIN 0x18 // address of T_SAVER MIN(VDD->BAT)
#define ADDR_SAVtoBAT_HR 0x19 // address of T_SAVER HR (VDD->BAT)
#define ADDR_SAVtoBAT_DAT 0x1a // address of T_SAVER DAT(VDD->BAT)
#define ADDR_SAVtoBAT_MTH 0x1b // address of T_SAVER MTH(VDD->BAT)
#define START_32KHZ 0x80 // start crystal: ST = b7 (ADDR_SEC)
#define OSCON 0x20 // state of the oscillator(running or not)
#define VBATEN 0x08 // enable battery for back-up
static uint8_t bin2bcd(uint8_t binary_value)
{
uint8_t temp;
uint8_t retval;
temp = binary_value;
retval = 0;
if(temp >= 10)
{
temp -= 10;
retval += 0x10;
}
else
{
retval += temp;
//break;
}
return(retval);
}
static uint8_t bcd2bin(uint8_t bcd_value)
{
uint8_t temp;
temp = bcd_value;
temp >>= 1;
temp &= 0x78;
return(temp + (temp >> 2) + (bcd_value & 0x0f));
}
static void setConfig(void){
config_2[0] = tim_read[0] | START_32KHZ; // bitwise OR sets Start osc bit = 1
config_2[1] = tim_read[1];
config_2[2] = tim_read[2];
//0x03h – Contains the BCD day. The range is 1-7.
//Bit 3 is the VBATEN bit. If this bit is set, the
//internal circuitry is connected to the VBAT pin
//when VCC fails. If this bit is ‘0’ then the VBAT pin is
//disconnected and the only current drain on the
//external battery is the VBAT pin leakage.
config_2[3] = tim_read[3] | VBATEN;
config_2[4] = tim_read[4];
config_2[5] = tim_read[5];
config_2[6] = tim_read[6];
config_2[7] = 0x00; // control b3 - extosc = 0
}
static void initialize(void){
uint8_t buf[7]; // Fill this with RTC clock data for all seven registers
// read stored time data
config_t[0] = 0x00; //reset pointer reg to '00'
// Set up config to read the time and set the control bits
//i2c.write(addr, config_t, 1); // write address 00
packet_tx.chip = RTC_ADDR;
packet_tx.addr[0] = 0; // RTCSEC
packet_tx.addr_length = 1;
packet_tx.buffer = config_t;
packet_tx.length = 1;
twi_master_write(TWI4, &packet_tx);
delay_ms(250);
//
//i2c.read(addr, tim_read, 7); //read time ss mm hh from r1, r2, r3
packet_rx.chip = RTC_ADDR;
packet_rx.addr[0] = 0; // RTCSEC
packet_rx.addr_length = 1;
packet_rx.buffer = tim_read;
packet_rx.length = sizeof(tim_read);
twi_master_read(TWI4, &packet_rx);
delay_ms(250);
setConfig(); //puts RTCC data into config array from tim_read array
// write the config data
//i2c.write(addr, config_t, 9); // write the config data back to the RTCC module
packet_tx.chip = RTC_ADDR;
packet_tx.addr[0] = 0; // RTCSEC
packet_tx.addr_length = 1;
packet_tx.buffer = config_2;
packet_tx.length = sizeof(config_2);
twi_master_write(TWI4, &packet_tx);
}
static void write_time(void){
// re-calculate mins
mins = 8; //ORE 10:08
mins = mins%60;
ch_mins = 16*(mins/10) + mins%10;
MSN = msn(ch_mins);
LSN = lsn(ch_mins);
tim_read[1] = ch_mins;
inc_mins = 0;
//write the data back to RTCC
setConfig();
//i2c.write(addr, config_t, 9);
/* Configure the data packet to be transmitted */
packet_tx.chip = RTC_ADDR;
packet_tx.addr[0] = 0; // RTCSEC
packet_tx.addr_length = 1;
packet_tx.buffer = config_2;
packet_tx.length = sizeof(config_2);
twi_master_write(TWI4, &packet_tx);
//Display and set hours
//hrs = bcd2dec(tim_read[2]);
// re-calculate hrs
hrs = 10; //ORE 10:08
hrs = hrs%24;
ch_hrs = 16*(hrs/10) + hrs%10;
MSN = msn(ch_hrs);
LSN = lsn(ch_hrs);
tim_read[2] = ch_hrs;
inc_hr = 0;
//write the data back to RTCC
setConfig();
/* Configure the data packet to be transmitted */
packet_tx.chip = RTC_ADDR;
packet_tx.addr[0] = 0; // RTCSEC
packet_tx.addr_length = 1;
packet_tx.buffer = config_2;
packet_tx.length = sizeof(config_2);
twi_master_write(TWI4, &packet_tx);
}
static void read_time(void){
//config_t[0] = 0x00; //reset pointer reg to '00'
//// First Get the time
////i2c.write(addr, config_t, 1); // write address 00
//packet_tx.chip = RTC_ADDR;
//packet_tx.addr[0] = 0; // RTCSEC
//packet_tx.addr_length = 1;
//packet_tx.buffer = config_t;
//packet_tx.length = 1;
//
//twi_master_write(TWI4, &packet_tx);
delay_ms(250);
uint8_t buf[7]; // Fill this with RTC clock data for all seven registers
/* Configure the data packet to be received */
packet_rx.chip = RTC_ADDR;
packet_rx.addr[0] = 0; // RTCSEC
packet_rx.addr_length = 1;
packet_rx.buffer = buf;
packet_rx.length = sizeof(buf);
twi_master_read(TWI4, &packet_rx);
for(uint8_t i = 0; i < sizeof(buf); i++){
tim_read[i] = buf[i];
}
}
void example_print_time(void){
//initialize();
delay_ms(1000);
//write_time(); //commented to see if time is permanent
delay_ms(1000);
read_time();
while(1){
printf("Reading time\n");
printf("%d:%d:%d\n", bcd2dec(tim_read[2]), bcd2dec(tim_read[1]), bcd2dec(tim_read[0] ^ START_32KHZ));
delay_ms(1000);
read_time();
}
}
I need to implement my own packets to send over UDP. I decided that I would do this by sending a char buffer which has the sequence number, checksum, size, and the data of the packet which is bytes from a file. The string i'm sending separates each field by a semicolon. Then, when I receive the string (which is my packet) I want to extract each felid, use them accordingly (the sequence number, size, and checksum) and write the bytes to a file. So far I have wrote a method to create 100 packets, and I'm trying to extract and write the bytes to a file (I'm not doing it in the receiver yet, first I'm testing the parsing in the sender). For some reason, the bytes written to my file are incorrect and I'm getting "JPEG DATATSTREAM CONTAINS NO IMAGE" error when I try to open it.
struct packetNode{
char packet[1052]; // this is the entire packet data including the header
struct packetNode *next;
};
This is how I'm creating my packets:
//populate initial window of size 100
for(i = 0; i < 100; i++){
memset(&data[0], 0, sizeof(data));
struct packetNode *p; // create packet node
p = (struct packetNode *)malloc(sizeof(struct packetNode));
bytes = fread(data, 1, sizeof(data), fp); // read 1024 bytes from file into data buffer
int b = fwrite(data, 1, bytes, fpNew);
printf("read: %d\n", bytes);
memset(&p->packet[0], 0, sizeof(p->packet));
sprintf(p->packet, "%d;%d;%d;%s", s, 0, numPackets, data); // create packet
//calculate checksum
int check = checksum8(p->packet, sizeof(p->packet));
sprintf(p->packet, "%d;%d;%d;%s", s, check, numPackets, data); //put checksum in packet
s++; //incremenet sequence number
if(i == 0){
head = p;
tail = p;
tail->next = NULL;
}
else{
tail->next = p;
tail = p;
tail->next = NULL;
}
}
fclose(fp);
and this is where I parse and write the bytes to a file:
void test(){
FILE *fpNew = fopen("test.jpg", "w");
struct packetNode *ptr = head;
char *tokens;
int s, c, size;
int i = 0;
char data[1024];
while(ptr != NULL){
memset(&data[0], 0, sizeof(data));
tokens = strtok(ptr->packet,";");
s = atoi(tokens);
tokens = strtok(NULL, ";");
c = atoi(tokens);
tokens = strtok(NULL, ";");
size = atoi(tokens);
tokens = strtok(NULL, ";");
if(tokens != NULL)
strcpy(data, tokens);
printf("sequence: %d, checksum: %d, size: %d\n", s,c,size);
int b = fwrite(data, 1, sizeof(data), fpNew);
ptr = ptr->next;
i++;
}
fclose(fpNew);
}
Since there is transfer of binary data, a JPEG stream, this data cannot be treated as a string. It's better to go all binary. For instance, instead of
sprintf(p->packet, "%d;%d;%d;%s", s, 0, numPackets, data); // create packet
you would do
sprintf(p->packet, "%d;%d;%d;", s, 0, numPackets);
memcpy(&p->packet[strlen(p->packet)], data, bytes);
but this leads to parsing problems: we would need to change this:
tokens = strtok(NULL, ";");
if(tokens != NULL)
strcpy(data, tokens);
to something like this:
tokens += 1 + ( size < 10 ? 1 : size < 100 ? 2 : size < 1000 ? 3 : size < 10000 ? 4 : 5 );
memcpy(data, tokens, sizeof(data));
#Binary Protocol
It's easier to use a binary packet:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#pragma push(pack,1)
typedef struct Packet {
int seq, maxseq, size;
unsigned short cksum;
unsigned char payload[];
} Packet;
#pragma pop(pack)
typedef struct PacketNode{
struct PacketNode * next;
Packet packet;
} PacketNode;
PacketNode * allocPacketNode(int maxPayloadSize) {
void * ptr = malloc(sizeof(PacketNode) + maxPayloadSize); // FIXME: error checking
memset(ptr, 0, sizeof(PacketNode) + maxPayloadSize); // mallocz wouldn't cooperate
return (PacketNode*) ptr;
}
PacketNode * prepare(FILE * fp, int fsize, int chunksize)
{
PacketNode * head = allocPacketNode(chunksize);
PacketNode * pn = head;
int rd, seq = 0;
int maxseq = fsize / chunksize + ( fsize % chunksize ? 1 : 0 );
while ( ( rd = fread(pn->packet.payload, 1, chunksize, fp ) ) > 0 )
{
printf("read %d bytes\n", rd);
pn->packet.seq = seq++;
pn->packet.maxseq = maxseq;
pn->packet.size = rd + sizeof(Packet);
pn->packet.cksum = 0;
pn->packet.cksum = ~checksum(&pn->packet, pn->packet.size);
if ( rd == chunksize )
pn = pn->next = allocPacketNode(chunksize);
}
return head;
}
int checksum(unsigned char * data, int len)
{
int sum = 0, i;
for ( i = 0; i < len; i ++ )
sum += data[i];
if ( sum > 0xffff )
sum = (sum & 0xffff) + (sum>>16);
return sum;
}
void test( PacketNode * ptr ) {
FILE *fpNew = fopen("test.jpg", "w");
while (ptr != NULL)
{
printf("sequence: %d/%d, checksum: %04x, size: %d\n",
ptr->packet.seq,
ptr->packet.maxseq,
ptr->packet.cksum,
ptr->packet.size - sizeof(Packet)
);
int b = fwrite(ptr->packet.payload, ptr->packet.size - sizeof(Packet), 1, fpNew);
ptr = ptr->next;
}
fclose(fpNew);
}
void fatal( const char * msg ) { printf("FATAL: %s\n", msg); exit(1); }
int main(int argc, char** argv)
{
if ( ! argv[1] ) fatal( "missing filename argument" );
FILE * fp = fopen( argv[1], "r" );
if ( ! fp ) fatal( "cannot open file" );
fseek( fp, 0, SEEK_END );
long fsize = ftell(fp);
fseek( fp, 0, SEEK_SET );
printf("Filesize: %d\n", fsize );
test( prepare(fp, fsize, 1024) );
}
The #pragma push(pack,1) changes how the compiler aligns fields of the struct. We want them to be compact, for network transport. Using 1 is byte-aligned. The #pragma pop(pack) restores the previous setting of the pack pragma.
A note on the checksum method
First we calculate the sum of all the bytes in the packet:
int sum = 0, i;
for ( i = 0; i < len; i ++ )
sum += data[i];
Since the packet uses an unsigned short (16 bits, max value 65535 or 0xffff) to store the checksum, we make sure that the result will fit:
if ( sum > 0xffff ) // takes up more than 16 bits.
Getting the low 16 bits of this int is done using sum & 0xffff, masking out everything but the low 16 bits. We could simply return this value, but we would loose the information from higher checksum bits. So, we will add the upper 16 bits to the lower 16 bits. Accessing the higher 16 bits is done by shifting the int to the right 16 bits, like so: sum >> 16. This is the same as sum / 65536, since 65536 = 216 = 1 << 16.
sum = (sum & 0xffff) + (sum>>16); // add low 16 bits and high 16 bits
I should note that network packet checksums are usually computed 2 bytes (or 'octets' as they like to call them there) at a time. For that, the data should be cast to an unsigned short *, and len should be divided by 2. However! len may be odd, so in that case we'll need to take special care of the last byte. For instance, assuming that the maximum packet size is even, and that the len argument is always <= max_packet_size:
unsigned short * in = (unsigned short *) data;
if ( len & 1 ) data[len] = 0; // make sure last byte is 0
len = (len + 1) / 2;
The rest of the checksum method can remain the same, except that it should operate on in instead of data.
My application is receiving information from smart heart device. Now i can see pulse value. Could you please help me to parse R-R Interval value? How can i check device support R-R Interval value or Not ?
Any advise from you
Thanks
Have you checked the Bluetooth spec? The sample code below is in C#, but I think it shows the way to parse the data in each heart rate packet.
//first byte of heart rate record denotes flags
byte flags = heartRateRecord[0];
ushort offset = 1;
bool HRC2 = (flags & 1) == 1;
if (HRC2) //this means the BPM is un uint16
{
short hr = BitConverter.ToInt16(heartRateRecord, offset);
offset += 2;
}
else //BPM is uint8
{
byte hr = heartRateRecord[offset];
offset += 1;
}
//see if EE is available
//if so, pull 2 bytes
bool ee = (flags & (1 << 3)) != 0;
if (ee)
offset += 2;
//see if RR is present
//if so, the number of RR values is total bytes left / 2 (size of uint16)
bool rr = (flags & (1 << 4)) != 0;
if (rr)
{
int count = (heartRateRecord.Length - offset)/2;
for (int i = 0; i < count; i++)
{
//each existence of these values means an R-Wave was already detected
//the ushort means the time (1/1024 seconds) since last r-wave
ushort value = BitConverter.ToUInt16(heartRateRecord, offset);
double intervalLengthInSeconds = value/1024.0;
offset += 2;
}
}
This post is a little old but a full answer has not been given.
As I run into this post and it did help me at the end, I would like to share my final code. Hopefully it will help others.
The code provided by Daniel Judge is actually right, but as he already wrote, it is C#. HIs code is a bit better compared to what Simon M came up with at the end as the code of Daniel Judge takes into account there can be more than two RR-values within one message.
Here is the actual spec of the Heart_rate_measurement characteristic
I have translated Daniel Judge his code to Objective-C:
// Instance method to get the heart rate BPM information
- (void) getHeartBPMData:(CBCharacteristic *)characteristic error:(NSError *)error
{
// Get the BPM //
// https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.heart_rate_measurement.xml //
// Convert the contents of the characteristic value to a data-object //
NSData *data = [characteristic value];
// Get the byte sequence of the data-object //
const uint8_t *reportData = [data bytes];
// Initialise the offset variable //
NSUInteger offset = 1;
// Initialise the bpm variable //
uint16_t bpm = 0;
// Next, obtain the first byte at index 0 in the array as defined by reportData[0] and mask out all but the 1st bit //
// The result returned will either be 0, which means that the 2nd bit is not set, or 1 if it is set //
// If the 2nd bit is not set, retrieve the BPM value at the second byte location at index 1 in the array //
if ((reportData[0] & 0x01) == 0) {
// Retrieve the BPM value for the Heart Rate Monitor
bpm = reportData[1];
offset = offset + 1; // Plus 1 byte //
}
else {
// If the second bit is set, retrieve the BPM value at second byte location at index 1 in the array and //
// convert this to a 16-bit value based on the host’s native byte order //
bpm = CFSwapInt16LittleToHost(*(uint16_t *)(&reportData[1]));
offset = offset + 2; // Plus 2 bytes //
}
NSLog(#"bpm: %i", bpm);
// Determine if EE data is present //
// If the 3rd bit of the first byte is 1 this means there is EE data //
// If so, increase offset with 2 bytes //
if ((reportData[0] & 0x03) == 1) {
offset = offset + 2; // Plus 2 bytes //
}
// Determine if RR-interval data is present //
// If the 4th bit of the first byte is 1 this means there is RR data //
if ((reportData[0] & 0x04) == 0)
{
NSLog(#"%#", #"Data are not present");
}
else
{
// The number of RR-interval values is total bytes left / 2 (size of uint16) //
NSUInteger length = [data length];
NSUInteger count = (length - offset)/2;
NSLog(#"RR count: %lu", (unsigned long)count);
for (int i = 0; i < count; i++) {
// The unit for RR interval is 1/1024 seconds //
uint16_t value = CFSwapInt16LittleToHost(*(uint16_t *)(&reportData[offset]));
value = ((double)value / 1024.0 ) * 1000.0;
offset = offset + 2; // Plus 2 bytes //
NSLog(#"RR value %lu: %u", (unsigned long)i, value);
}
}
}
EDIT:
this work for me, i get the correct rr values:
In some cases you can find two values at the same time for rr.
- (void) updateWithHRMData:(NSData *)datas {
const uint8_t *reportData = [datas bytes];
uint16_t bpm = 0;
uint16_t bpm2 = 0;
if ((reportData[0] & 0x04) == 0)
{
NSLog(#"%#", #"Data are not present");
}
else
{
bpm = CFSwapInt16LittleToHost(*(uint16_t *)(&reportData[2]));
bpm2 = CFSwapInt16LittleToHost(*(uint16_t *)(&reportData[4]));
if (bpm != 0 || bpm2 != 0) {
NSLog(#"%u", bpm);
if (bpm2 != 0) {
NSLog(#"%u", bpm2);
}
}
}
}
in #Brabbeldas solution i had to use a different flag to get rri values. but might depend on device used.
if ((reportData[0] & 0x10) == 0)
instead of
if ((reportData[0] & 0x04) == 0)
Parse heart rate parameters in "C"
I uploaded the sample application to GitHub Heart-Rate-Bluegiga
void ble_evt_attclient_attribute_value(const struct ble_msg_attclient_attribute_value_evt_t *msg)
{
if (msg->value.len < 2) {
printf("Not enough fields in Heart Rate Measurement value");
change_state(state_finish);
}
// Heart Rate Profile defined flags
const unsigned char HEART_RATE_VALUE_FORMAT = 0x01;
const unsigned char ENERGY_EXPENDED_STATUS = 0x08;
const unsigned char RR_INTERVAL = 0x10;
unsigned char current_offset = 0;
unsigned char flags = msg->value.data[current_offset];
int is_heart_rate_value_size_long = ((flags & HEART_RATE_VALUE_FORMAT) != 0);
int has_expended_energy = ((flags & ENERGY_EXPENDED_STATUS) != 0);
int has_rr_intervals = ((flags & RR_INTERVAL) != 0);
current_offset++;
uint16 heart_rate_measurement_value = 0;
if (is_heart_rate_value_size_long)
{
heart_rate_measurement_value = (uint16)((msg->value.data[current_offset + 1] << 8) +
msg->value.data[current_offset]);
current_offset += 2;
}
else
{
heart_rate_measurement_value = msg->value.data[current_offset];
current_offset++;
}
printf("Heart rate measurment value: %d ", heart_rate_measurement_value);
uint16 expended_energy_value = 0;
if (has_expended_energy)
{
expended_energy_value = (uint16)((msg->value.data[current_offset + 1] << 8) +
msg->value.data[current_offset]);
current_offset += 2;
printf(" Expended energy value: %d ", expended_energy_value);
}
uint16 rr_intervals[10] = {0};
if (has_rr_intervals)
{
printf(" Rr intervals: ");
int rr_intervals_count = (msg->value.len - current_offset) / 2;
for (int i = 0; i < rr_intervals_count; i++)
{
int raw_rr_interval = (uint16)((msg->value.data[current_offset + 1] << 8) +
msg->value.data[current_offset]);
rr_intervals[i] = ((double)raw_rr_interval / 1024) * 1000;
current_offset += 2;
printf("%d ", rr_intervals[i]);
}
printf("\n");
}
}