How to sum individual elements MATLAB - matlab

Suppose I have a row matrix [a1 a2 a3 a4 .. an] and I wish to achieve each of the following in MATLAB
1) 1+a1
2) 1+a1+a2
3) 1+a1+a2+a3
4) 1+a1+a2+a3+a4
....
1+a1+a2+...+an
How shall I get them?

This is the purpose of the cumsum function. If A is a vector containing the elements [a1 a2 a3 .. an] then
B = cumsum([1 A]);
contains the terms you are searching for. Another possibility is
B = 1 + cumsum(A);
Edit
If you don't want to use a built-in function like cumsum, then the simpler way to go is to do a for loop:
% Consider preallocation for speed
B = NaN(numel(A),1);
% Assign the first element
B(1) = 1 + A(1);
% The loop
for i = 2:numel(A)
B(i) = B(i-1) + A(i);
end
or, without preallocation:
B = 1 + A(1);
for i = 2:numel(A)
B(end+1) = B(end) + A(i);
end
Best,

Related

Memory usage by Matlab

I'm running a Matlab code in the HPC of my university. I have two versions of the code. The second version, despite generating a smaller array, seems to require more memory. I would like your help to understand if this is in fact the case and why.
Let me start from some preliminary lines:
clear
rng default
%Some useful components
n=7^4;
vectors{1}=[1,20,20,20,-1,Inf,-Inf];
vectors{2}=[-19,19,19,19,-20,Inf,-Inf];
vectors{3}=[-19,0,0,0,-20,Inf,-Inf];
vectors{4}=[-19,0,0,0,-20,Inf,-Inf];
T_temp = cell(1,4);
[T_temp{:}] = ndgrid(vectors{:});
T_temp = cat(4+1, T_temp{:});
T = reshape(T_temp,[],4); %all the possible 4-tuples from vectors{1}, ..., vectors{4}
This is the first version 1 of the code: I construct the matrix D1 listing all possible pairs of unordered rows from T
indices_pairs=pairIndices(n);
D1=[T(indices_pairs(:,1),:) T(indices_pairs(:,2),:)];
This is the second version of the code: I construct the matrix D2 listing a random draw of m=10^6 unordered pairs of rows from T
m=10^6;
p=n*(n-1)/2;
random_indices_pairs = randperm(p, m).';
[C1, C2] = myind2ind (random_indices_pairs, n);
indices_pairs=[C1 C2];
D2=[T(indices_pairs(:,1),:) T(indices_pairs(:,2),:)];
My question: when generating D2 the HPC goes out of memory. When generating D1 the HPC works fine, despite D1 being a larger array than D2. Why is that the case?
These are complementary functions used above:
function indices = pairIndices(n)
[y, x] = find(tril(logical(ones(n)), -1)); %#ok<LOGL>
indices = [x, y];
end
function [R , C] = myind2ind(ii, N)
jj = N * (N - 1) / 2 + 1 - ii;
r = (1 + sqrt(8 * jj)) / 2;
R = N -floor(r);
idx_first = (floor(r + 1) .* floor(r)) / 2;
C = idx_first-jj + R + 1;
end

Take a random draw of all possible pairs of indices in Matlab

Consider a Matlab matrix B which lists all possible unordered pairs (without repetitions) from [1 2 ... n]. For example, if n=4,
B=[1 2;
1 3;
1 4;
2 3;
2 4;
3 4]
Note that B has size n(n-1)/2 x 2
I want to take a random draw of m rows from B and store them in a matrix C. Continuing the example above, I could do that as
m=2;
C=B(randi([1 size(B,1)],m,1),:);
However, in my actual case, n=371293. Hence, I cannot create B and, then, run the code above to obtain C. This is because storing B would require a huge amount of memory.
Could you advise on how I could proceed to create C, without having to first store B? Comments on a different question suggest to
Draw at random m integers between 1 and n(n-1)/2.
I=randi([1 n*(n-1)/2],m,1);
Use ind2sub to obtain C.
Here, I'm struggling to implement the second step.
Thanks to the comments below, I wrote this
n=4;
m=10;
coord=NaN(m,2);
R= randi([1 n^2],m,1);
for i=1:m
[cr, cc]=ind2sub([n,n],R(i));
if cr>cc
coord(i,1)=cc;
coord(i,2)=cr;
elseif cr<cc
coord(i,1)=cr;
coord(i,2)=cc;
end
end
coord(any(isnan(coord),2),:) = []; %delete NaN rows from coord
I guess there are more efficient ways to implement the same thing.
You can use the function named myind2ind in this post to take random rows of all possible unordered pairs without generating all of them.
function [R , C] = myind2ind(ii, N)
jj = N * (N - 1) / 2 + 1 - ii;
r = (1 + sqrt(8 * jj)) / 2;
R = N -floor(r);
idx_first = (floor(r + 1) .* floor(r)) / 2;
C = idx_first-jj + R + 1;
end
I=randi([1 n*(n-1)/2],m,1);
[C1 C2] = myind2ind (I, n);
If you look at the odds, for i=1:n-1, the number of combinations where the first value is equal to i is (n-i) and the total number of cominations is n*(n-1)/2. You can use this law to generate the first column of C. The values of the second column of C can then be generated randomly as integers uniformly distributed in the range [i+1, n]. Here is a code that performs the desired tasks:
clc; clear all; close all;
% Parameters
n = 371293; m = 10;
% Generation of C
R = rand(m,1);
C = zeros(m,2);
s = 0;
t = n*(n-1)/2;
for i=1:n-1
if (i<n-1)
ind_i = R>=s/t & R<(s+n-i)/t;
else % To avoid rounding errors for n>>1, we impose (s+n-i)=t at the last iteration (R<(s+n-i)/t=1 always true)
ind_i = R>=s/t;
end
C(ind_i,1) = i;
C(ind_i,2) = randi([i+1,n],sum(ind_i),1);
s = s+n-i;
end
% Display
C
Output:
C =
84333 266452
46609 223000
176395 328914
84865 94391
104444 227034
221905 302546
227497 335959
188486 344305
164789 266497
153603 354932
Good luck!

Simple Recursive relation

Suppose I have vectors z1 z2 z3 z4 and b and matrices D1 D2 D3 D4.
I want to construct:
b1 = D2*z2 + D3*z3 +D4*z4 -b
b2 = D1*z1 + D3*z3 +D4*z4 -b
b3 = D1*z1 + D2*z2 +D4*z4 -b
b4 = D1*z1 + D2*z2 +D3*z3 -b
I planned to store my z vectors and D matrices in cells and extract them to create b by a for loop. e.g.
for i = 1:3
b(i) = D{i+1}*z{i+1} + D{i}*z{i};
end
Of course it certainly fails because it involves D{i}*z{i} at each i step. Can you please help me to accomplish my task?
You can do it like this (no recursion, but still any pair-wise product is only computed once).
pairs = zeros(size(D{1},1), 4);
for ii=4:-1:1,
pairs(:,ii) = D{ii}*z{ii};
end
Once you have the product of all pairs, you can take the sum
all_sum = sum(pairs, 2) - b_vec; % D1*z1 + D2*z2 + D3*z3 +D4*z4 -b
To get the proper b_i you only need to subtract pairs(:,ii) from the sum:
for ii=4:-1:1
b{ii} = all_sum - pairs{ii};
end

Matlab: how can I perform row operations without brute-force for loop?

I need to do function that works like this :
N1 = size(X,1);
N2 = size(Xtrain,1);
Dist = zeros(N1,N2);
for i=1:N1
for j=1:N2
Dist(i,j)=D-sum(X(i,:)==Xtrain(j,:));
end
end
(X and Xtrain are sparse logical matrixes)
It works fine and passes the tests, but I believe it's not very optimal and well-written solution.
How can I improve that function using some built Matlab functions? I'm absolutely new to Matlab, so I don't know if there really is an opportunity to make it better somehow.
You wanted to learn about vectorization, here some code to study comparing different implementations of this pair-wise distance.
First we build two binary matrices as input (where each row is an instance):
m = 5;
n = 4;
p = 3;
A = double(rand(m,p) > 0.5);
B = double(rand(n,p) > 0.5);
1. double-loop over each pair of instances
D0 = zeros(m,n);
for i=1:m
for j=1:n
D0(i,j) = sum(A(i,:) ~= B(j,:)) / p;
end
end
2. PDIST2
D1 = pdist2(A, B, 'hamming');
3. single-loop over each instance against all other instances
D2 = zeros(m,n);
for i=1:n
D2(:,i) = sum(bsxfun(#ne, A, B(i,:)), 2) ./ p;
end
4. vectorized with grid indexing, all against all
D3 = zeros(m,n);
[x,y] = ndgrid(1:m,1:n);
D3(:) = sum(A(x(:),:) ~= B(y(:),:), 2) ./ p;
5. vectorized in third dimension, all against all
D4 = sum(bsxfun(#ne, A, reshape(B.',[1 p n])), 2) ./ p;
D4 = permute(D4, [1 3 2]);
Finally we compare all methods are equal
assert(isequal(D0,D1,D2,D3,D4))

writing a matrix in a loop

I have a series of arrays of equal length, and want to make a matrix for each data point of these, and perform some sort of operation such a multiplying the matrices.
a=ones(1,10);
b=3*ones(1,10);
c=zeros(1,10);
for i=1:10
A(i)=[a(i) a(i);
b(i) b(i)];
B(i)=[c(i) c(i)];
C(i)=B(i)*A(i);
end
Is this possible without using cells?
A = zeros(2,2,length(a));
B = zeros(length(a),:);
C = zeros(size(B));
for i=1:10
A(:,:,i)=[a(i) a(i);
b(i) b(i)];
B(i,:)=[c(i) c(i)];
C(i,:)=B(i,:)*A(:,:,i);
end
Note you can make A and B without loops:
aa = permute(A, [3,2,1]);
bb = permute(B, [3,2,1]);
A = [aa,aa;bb,bb];
B = [c.', c.'];