Computing phase angle in fft matlab - matlab

I am trying to compute the phase angle in the frequency domain (after computing fft) of the second component of the Fourier spectrum of a synthetic signal constructed by me in the workspace of Matlab. I am sure that the phase is equal to 0 (as you can see in the code), but the result I get is pi/2. The code is the following:
t = 0:pi / 128:(2 * pi - pi / 128);
V = sin(t);
L = length(V);
n = 2^nextpow2(L);
Y = fft(V, n);
threshold = max(abs(Y))/10000;
Y(abs(Y)<threshold) = 0;
mag = abs(Y/n);
angle = rad2deg(atan2(imag(Y),real(Y)));
I do not see where the error is.

You are mistaken that the phase of a real, periodic sine wave with a frequency that corresponds to the bin center frequency (and no phase offset) is zero. The basis functions representing the real part of the original sequence are cosine functions.
To represent a sine wave with a cosine wave a phase offset of pi/2 has to be subtracted:
sin(x) = cos(x - pi/2).
Therefore, the phase in bin 2 (corresponding to the frequency of the original sequence), is -pi/2.
(For a more thorough explanation see this question on DSP.SE.)

Related

Determining time-dependent frequency using a sliding-window FFT

I have an instrument which produces roughly sinusoidal data, but with frequency varying slightly in time. I am using MATLAB to prototype some code to characterize the time dependence, but I'm running into some issues.
I am generating an idealized approximation of my data, I(t) = sin(2 pi f(t) t), with f(t) variable but currently tested as linear or quadratic. I then implement a sliding Hamming window (of width w) to generate a set of Fourier transforms F[I(t), t'] corresponding to the data points in I(t), and each F[I(t), t'] is fit with a Gaussian to more precisely determine the peak location.
My current MATLAB code is:
fs = 1000; %Sample frequency (Hz)
tlim = [0,1];
t = (tlim(1)/fs:1/fs:tlim(2)-1/fs)'; %Sample domain (t)
N = numel(t);
f = #(t) 100-30*(t-0.5).^2; %Frequency function (Hz)
I = sin(2*pi*f(t).*t); %Sample function
w = 201; %window width
ww=floor(w/2); %window half-width
for i=0:2:N-w
%Take the FFT of a portion of I, convolved with a Hamming window
II = 1/(fs*N)*abs(fft(I((1:w)+i).*hamming(w))).^2;
II = II(1:floor(numel(II)/2));
p = (0:fs/w:(fs/2-fs/w))';
%Find approximate FFT maximum
[~,maxIx] = max(II);
maxLoc = p(maxIx);
%Fit the resulting FFT with a Gaussian function
gauss = #(c,x) c(1)*exp(-(x-c(2)).^2/(2*c(3)^2));
op = optimset('Display','off');
mdl = lsqcurvefit(gauss,[max(II),maxLoc,10],p,II,[],[],op);
%Generate diagnostic plots
subplot(3,1,1);plot(p,II,p,gauss(mdl,p))
line(f(t(i+ww))*[1,1],ylim,'color','r');
subplot(3,1,2);plot(t,I);
line(t(1+i)*[1,1],ylim,'color','r');line(t(w+i)*[1,1],ylim,'color','r')
subplot(3,1,3);plot(t(i+ww),f(t(i+ww)),'b.',t(i+ww),mdl(2),'r.');
hold on
xlim([0,max(t)])
drawnow
end
hold off
My thought process is that the peak location in each F[I(t), t'] should be a close approximation of the frequency at the center of the window which was used to produce it. However, this does not seem to be the case, experimentally.
I have had some success using discrete Fourier analysis for engineering problems in the past, but I've only done coursework on continuous Fourier transforms--so there may be something obvious that I'm missing. Also, this is my first question on StackExchange, so constructive criticism is welcome.
So it turns out that my problem was a poor understanding of the mathematics of the sine function. I had assumed that the frequency of the wave was equal to whatever was multiplied by the time variable (e.g. the f in sin(ft)). However, it turns out that the frequency is actually defined by the derivative of the entire argument of the sine function--the rate of change of the phase.
For constant f the two definitions are equal, since d(ft)/dt = f. But for, say, f(t) = sin(t):
d(f(t)t)/dt = d(sin(t) t)/dt = t cos(t) + sin(t)
The frequency varies as a function very different from f(t). Changing the function definition to the following fixed my problem:
f = #(t) 100-30*(t-0.5).^2; %Frequency function (Hz)
G = cumsum(f(t))/fs; %Phase function (Hz)
I = sin(2*pi*G); %Sampling function

Phase Difference Between Two Sine Waves With Same Frequency

I have two vectors that represent two different signals, each being a sine wave with the same frequency. I've tried cross-correlation, Fourier transforms, Hilbert transforms, etc, but nothing returns the correct, theoretical value (in radians) at a specific frequency (should be negative). Is there any method in Matlab to calculate the phase difference of two sine waves with the same frequency?
Note: I have access to the frequency and amplitudes of both signals, and I can post some code if needed.
Assuming s1 and s2 are your isofrequential sine waves you can evaluate the phase difference (absolute value in radians) between them as easily as acos( dot(a,b) / (norm(a)*norm(b)) ).
x = 0:.001:100;
omega = 2*pi*100;
phi = pi/6;
s1 = sin(omega*x);
s2 = sin(omega*x - phi);
phase_diff = acos( dot(s1,s2) / (norm(s1)*norm(s2)) );

period of sawtooth from measurements

I have a series of 2D measurements (time on x-axis) that plot to a non-smooth (but pretty good) sawtooth wave. In an ideal world the data points would form a perfect sawtooth wave (with partial amplitude data points at either end). Is there a way of calculating the (average) period of the wave, using OCTAVE/MATLAB? I tried using the formula for a sawtooth from Wikipedia (Sawtooth_wave):
P = mean(time.*pi./acot(tan(y./4))), -pi < y < +pi
also tried:
P = mean(abs(time.*pi./acot(tan(y./4))))
but it didn't work, or at least it gave me an answer I know is out.
An example of the plotted data:
I've also tried the following method - should work - but it's NOT giving me what I know is close to the right answer. Probably something simple and wrong with my code. What?
slopes = diff(y)./diff(x); % form vector of slopes for each two adjacent points
for n = 1:length(diff(y)) % delete slope of any two points that form the 'cliff'
if abs(diff(y(n,1))) > pi
slopes(n,:) = [];
end
end
P = median((2*pi)./slopes); % Amplitude is 2*pi
Old post, but thought I'd offer my two-cent's worth. I think there are two reasonable ways to do this:
Perform a Fourier transform and calculate the fundamental
Do a curve-fitting of the phase, period, amplitude, and offset to an ideal square-wave.
Given curve-fitting will likely be difficult because of discontinuities in saw-wave, so I'd recommend Fourier transform. Self-contained example below:
f_s = 10; # Sampling freq. in Hz
record_length = 1000; # length of recording in sec.
% Create noisy saw-tooth wave, with known period and phase
saw_period = 50;
saw_phase = 10;
t = (1/f_s):(1/f_s):record_length;
saw_function = #(t) mod((t-saw_phase)*(2*pi/saw_period), 2*pi) - pi;
noise_lvl = 2.0;
saw_wave = saw_function(t) + noise_lvl*randn(size(t));
num_tsteps = length(t);
% Plot time-series data
figure();
plot(t, saw_wave, '*r', t, saw_function(t));
xlabel('Time [s]');
ylabel('Measurement');
legend('measurements', 'ideal');
% Perform fast-Fourier transform (and plot it)
dft = fft(saw_wave);
freq = 0:(f_s/length(saw_wave)):(f_s/2);
dft = dft(1:(length(saw_wave)/2+1));
figure();
plot(freq, abs(dft));
xlabel('Freqency [Hz]');
ylabel('FFT of Measurement');
% Estimate fundamental frequency:
[~, idx] = max(abs(dft));
peak_f = abs(freq(idx));
peak_period = 1/peak_f;
disp(strcat('Estimated period [s]: ', num2str(peak_period)))
Which outputs a couple of graphs, and also the estimated period of the saw-tooth wave. You can play around with the amount of noise and see that it correctly gets a period of 50 seconds till very high levels of noise.
Estimated period [s]: 50

identifying phase shift between signals

I have generated three identical waves with a phase shift in each. For example:
t = 1:10800; % generate time vector
fs = 1; % sampling frequency (seconds)
A = 2; % amplitude
P = 1000; % period (seconds), the time it takes for the signal to repeat itself
f1 = 1/P; % number of cycles per second (i.e. how often the signal repeats itself every second).
y1 = A*sin(2*pi*f1*t); % signal 1
phi = 10; % phase shift
y2 = A*sin(2*pi*f1*t + phi); % signal 2
phi = 15; % phase shift
y3 = A*sin(2*pi*f1*t + phi); % signal 3
YY = [y1',y2',y3'];
plot(t,YY)
I would now like to use a method for detecting this phase shift between the waves. The point of doing this is so that I can eventually apply the method to real data and identify phase shifts between signals.
So far I have been thinking of computing the cross spectra between each wave and the first wave (i.e. without the phase shift):
for i = 1:3;
[Pxy,Freq] = cpsd(YY(:,1),YY(:,i));
coP = real(Pxy);
quadP = imag(Pxy);
phase(:,i) = atan2(coP,quadP);
end
but I'm not sure if this makes any sense.
Has anyone else done something similar to this? The desired outcome should show a phase shift at 10 and 15 for waves 2 and 3 respectively.
Any advice would be appreciated.
There are several ways that you can measure the phase shift between signals. Between your response, the comments below your response, and the other answers, you've gotten most of the options. The specific choice of technique is usually based on issues such as:
Noisy or Clean: Is there noise in your signal?
Multi-Component or Single-Component: Are there more than one type of signal within your recording (multiple tones at multiple frequencies moving in different directions)? Or, is there just a single signal, like in your sine-wave example?
Instantaneous or Averaged: Are you looking for the average phase lag across your entire recording, or are you looking to track how the phase changes throughout the recording?
Depending on your answer to these questions, you could consider the following techniques:
Cross-Correlation: Use the a command like [c,lag]=xcorr(y1,y2); to get the cross-correlation between the two signals. This works on the original time-domain signals. You look for the index where c is maximum ([maxC,I]=max(c);) and then you get your lag value in units of samples lag = lag(I);. This approach gives you the average phase lag for the entire recording. It requires that your signal of interest in the recording be stronger than anything else in your recording...in other words, it is sensitive to noise and other interference.
Frequency Domain: Here you convert your signals into the frequency domain (using fft or cpsd or whatever). Then, you'd find the bin that corresponds to the frequency that you care about and get the angle between the two signals. So, for example, if bin #18 corresponds to your signal's frequency, you'd get the phase lag in radians via phase_rad = angle(fft_y1(18)/fft_y2(18));. If your signals have a constant frequency, this is an excellent approach because it naturally rejects all noise and interference at other frequencies. You can have really strong interference at one frequency, but you can still cleanly get your signal at another frequency. This technique is not the best for signals that change frequency during the fft analysis window.
Hilbert Transform: A third technique, often overlooked, is to convert your time-domain signal into an analytic signal via the Hilbert transform: y1_h = hilbert(y1);. Once you do this, your signal is a vector of complex numbers. A vector holding a simple sine wave in the time domain will now be a vector of complex numbers whose magnitude is constant and whose phase is changing in sync with your original sine wave. This technique allows you to get the instantaneous phase lag between two signals...it's powerful: phase_rad = angle(y1_h ./ y2_h); or phase_rad = wrap(angle(y1_h) - angle(y2_h));. The major limitation to this approach is that your signal needs to be mono-component, meaning that your signal of interest must dominate your recording. Therefore, you may have to filter out any substantial interference that might exist.
For two sinusoidal signal the phase of the complex correlation coefficient gives you what you want. I can only give you an python example (using scipy) as I don't have a matlab to test it.
x1 = sin( 0.1*arange(1024) )
x2 = sin( 0.1*arange(1024) + 0.456)
x1h = hilbert(x1)
x2h = hilbert(x2)
c = inner( x1h, conj(x2h) ) / sqrt( inner(x1h,conj(x1h)) * inner(x2h,conj(x2h)) )
phase_diff = angle(c)
There is a function corrcoeff in matlab, that should work, too (The python one discard the imaginary part). I.e. c = corrcoeff(x1h,x2h) should work in matlab.
The Matlab code to find relative phase using cross-correlation:
fr = 20; % input signal freq
timeStep = 1e-4;
t = 0:timeStep:50; % time vector
y1 = sin(2*pi*t); % reference signal
ph = 0.5; % phase difference to be detected in radians
y2 = 0.9 * sin(2*pi*t + ph); % signal, the phase of which, is to be measured relative to the reference signal
[c,lag]=xcorr(y1,y2); % calc. cross-corel-n
[maxC,I]=max(c); % find max
PH = (lag(I) * timeStep) * 2 * pi; % calculated phase in radians
>> PH
PH =
0.4995
With the correct signals:
t = 1:10800; % generate time vector
fs = 1; % sampling frequency (seconds)
A = 2; % amplitude
P = 1000; % period (seconds), the time it takes for the signal to repeat itself
f1 = 1/P; % number of cycles per second (i.e. how often the signal repeats itself every second).
y1 = A*sin(2*pi*f1*t); % signal 1
phi = 10*pi/180; % phase shift in radians
y2 = A*sin(2*pi*f1*t + phi); % signal 2
phi = 15*pi/180; % phase shift in radians
y3 = A*sin(2*pi*f1*t + phi); % signal 3
The following should work:
>> acos(dot(y1,y2)/(norm(y1)*norm(y2)))
>> ans*180/pi
ans = 9.9332
>> acos(dot(y1,y3)/(norm(y1)*norm(y3)))
ans = 0.25980
>> ans*180/pi
ans = 14.885
Whether or not that's good enough for your "real" signals, only you can tell.
Here is the little modification of your code: phi = 10 is actually in degree, then in sine function, phase information is mostly expressed in radian,so you need to change deg2rad(phi) as following:
t = 1:10800; % generate time vector
fs = 1; % sampling frequency (seconds)
A = 2; % amplitude
P = 1000; % period (seconds), the time it takes for the signal to repeat itself
f1 = 1/P; % number of cycles per second (i.e. how often the signal repeats itself every second).
y1 = A*sin(2*pi*f1*t); % signal 1
phi = deg2rad(10); % phase shift
y2 = A*sin(2*pi*f1*t + phi); % signal 2
phi = deg2rad(15); % phase shift
y3 = A*sin(2*pi*f1*t + phi); % signal 3
YY = [y1',y2',y3'];
plot(t,YY)
then using frequency domain method as mentioned chipaudette
fft_y1 = fft(y1);
fft_y2 = fft(y2);
phase_rad = angle(fft_y1(1:end/2)/fft_y2(1:end/2));
phase_deg = rad2deg(angle(fft_y1(1:end/2)/fft_y2(1:end/2)));
now this will give you a phase shift estimate with error = +-0.2145
If you know the frequency and just want to find the phase, rather than use a full FFT, you might want to consider the Goertzel algorithm, which is a more efficient way to calculate the DFT for a single frequency (an FFT will calculate it for all frequencies).
For a good implementation, see: https://www.mathworks.com/matlabcentral/fileexchange/35103-generalized-goertzel-algorithm and https://asp-eurasipjournals.springeropen.com/track/pdf/10.1186/1687-6180-2012-56.pdf
If you use an AWGN signal with delay and apply your method it works, but if you are using a single tone frequency estimation will not help you. because there is no energy in any other frequency but the tone. You better use cross-correlation in the time domain for this - it will work better for a fixed delay. If you have a wideband signal you can use subbands domain and estimate the phase from that (it is better than FFT due to low cross-frequency dependencies).

Difficulty understanding the phase calculated by the FFT. Short matlab demo to illustrate

I'm testing the phase output of an fft of a sin signal and a cos signal.
The script below creates the signals and performs an FFT on them. Bins who's amplitude is below a threshold are zeroed for the phase spectrum because I am only interested in the phase of the signals.
% 10khz 10 second long time interval
t = 0:1 / 10000:10;
%1khz cos
c = cos(2 * pi * 1000 .* t);
%1khz sin
s = sin(2 * pi * 1000 .* t);
%ffts
C = fft(c)/length(c);
S = fft(s)/length(s);
%magnitude and phases of ffts
CA = abs(C); %cos magnitude
SA = abs(S); %sin magnitude
Cthresh = max(CA) * 0.5;
Sthresh = max(SA) * 0.5;
%find all indeces below the threshold
Crange = find(CA < Cthresh);
Srange = find(SA < Sthresh);
%set the indeces below the threshold to 0 - phase will be meaningless for
%noise values
CP = angle(C);
CP(Crange) = 0;
SP = angle(S);
SP(Srange) = 0;
If you plot CP - the phase of the cos - you will get a phase of 0.3142 in the bins corresponding to the frequency of the cos signal and zeros elsewhere. This is pi/10. I'm expecting to get pi. Why is this?
If you plot SP you get values of 1.2566. I'm expecting to get pi/2 or 1.5708. 80% of the expected value. What is causing these errors?
If your input signal is not perfectly periodic in the FFT aperture length (an exact integer number of full periods), the sinusoids will be discontinuous across the ends of the FFT aperture. Thus you will get a phase that is the average of the two different phases at both ends of the FFT input vector.
If you want a more sensible phase, reference the phase of your sinusoids to the center of the FFT input vector, and do an fft shift before the FFT. This will result in a continuous sinusoid at the zero phase reference position, with a single phase instead of a weird average value.
Also note that matlab may reference the phase to the second point in a sampled sinusoid, e.g. vectorElement[i=1], not the first, vectorElement[i=0]. This will have a phase of pi/10 for a sinusoid of period = 20 samples.
The issue you have is exactly what hotpaw2 has stated. You have 100001 samples in t, so you do not have a perfectly periodic signal, therefore you have leakage. That means that you've got a sin()/sin() function from your implicit rectangular window convolved with your solution. That's what changes your phase.
If instead you try the following:
t = 0:1 / 10000:9.9999;
c = cos(2 * pi * 1000 .* t);
%1khz sin
s = sin(2 * pi * 1000 .* t);
%ffts
C = fft(c)/length(c);
S = fft(s)/length(s);
you would find that the phase of the cosine is zero (which is what you would expect) and that the phase of sine is pi/2.
Performing a linear shift in the time domain (using fftshift) will merely introduce a linear phase term in the frequency domain, and will not resolve the original problem.
In practice, rather than trying to set the length of the sequence precisely to match the period of the signal, windowing should be applied if the signal is to be examined in the frequency domain. In that case you really should make sure that your signals are appropriately aligned so that the window attenuates the end points, thus smoothing out the discontinuity. This has the effect of broadening the main lobe of the FFT, but it also controls the leakage.