Class::Method::Modifiers - How to apend parameters in "before"? - perl

See https://stackoverflow.com/a/45590793/2139766 for the original problem.
How to append parameter(s) to #_ in before provided by Class::Method::Modifiers?
before 'MIME::Lite::__opts' => sub {
# grep { s/^Hello$/SSL/ } #_; # OK - changes $_[1]
push(#_,'SSL'); # no effect
};

#_ is scoped to your sub. Changes to it can't be seen on the outside.
You noticed that changing the elements of #_ had an effect on scalars outside of the sub, but that's because the existing elements of #_ are aliased to scalars in the caller. But #_ itself is a local variable, so adding and removing elements has no effect on the caller.
You can use around to pass the original method a different #_.
around 'MIME::Lite::__opts' => sub {
my $orig = shift;
return $orig->(#_, 'SSL');
};
Note that changing $method->(#_); to &$method; in Class/Method/Modifiers.pm would allow you to do what you want (by having your sub use the caller's #_ instead of being giving it its own). However, that would cause a lack of symmetry with after, which has no way of manipulating the returned value.
grep { s/^Hello$/SSL/ } #_; # OK - changes $_[1]
No, that's not ok.
First of all,
grep { s/^Hello$/SSL/ } #_;
is a poor way to write
map { s/^Hello$/SSL/ } #_;
which is a poor way to write
s/^Hello$/SSL/ for #_;
That said, you shouldn't do any of those. They alter the arguments in the "real" caller, so you are risking nasty side-effects.
Even claiming it works if pushing it, seeing as the following will crash!
before method => sub {
s/^Hello$/SSL/ for #_;
};
$o->method("Hello"); # Dies: Can't modify constant item in substitution

Related

Getting Variable "#xml_files" will not stay shared at ... line

I have the following Perl code:
sub merge_xml {
foreach my $repository ('repo1', 'repo2') {
my #xml_files;
sub match_xml {
my $filename = $File::Find::dir . '/' . $_;
if ($filename =~ m%/(main|test)\.xml$%) {
push(#xml_files, $filename);
}
}
find(\&match_xml, $repository);
print Dumper(\#xml_files);
}
}
And I am getting the warning:
Variable "#xml_files" will not stay shared at ./script/src/repair.pl line 87.
How does one fix this?
PS find as in File::Find
"Nested" named subs in fact aren't -- they're compiled as separate subroutines, and so having them written as "nested" can only be misleading.
Further, this creates a problem since the "inner" subroutine supposedly closes over the variable #xml_files that it uses, which gets redefined on each new call, being lexical. But the sub, built at compile-time and not being a lexical closure, only keeps the refernce to the value at first call and so it works right only upon the first call to the outer sub (merge_xml here).
We do get the warning though. With use diagnostics; (or see it in perldiag)
Variable "$x" will not stay shared at -e line 1 (#1)
(W closure) An inner (nested) named subroutine is referencing a
lexical variable defined in an outer named subroutine.
When the inner subroutine is called, it will see the value of
the outer subroutine's variable as it was before and during the first
call to the outer subroutine; in this case, after the first call to the
outer subroutine is complete, the inner and outer subroutines will no
longer share a common value for the variable. In other words, the
variable will no longer be shared.
This problem can usually be solved by making the inner subroutine
anonymous, using the sub {} syntax. When inner anonymous subs that
reference variables in outer subroutines are created, they
are automatically rebound to the current values of such variables.
So pull out that "inner" sub (match_xml) and use it normally from the "outer" one (merge_xml). In general you'd pass the reference to the array (#xml_files) to it; or, since in this case one cannot pass to File::Find's find, can have the array in such scope so to be seen as needed.
Or, since the purpose of match_xml is to be find's "wanted" function, can use an anonymous sub for that purpose so there is no need for a separate named sub
find( sub { ... }, #dirs );
Or store that coderef in a variable, as shown in Ed Heal's answer
my $wanted_coderef = sub { ... };
find( $wanted_coderef, #dirs );
With help from zdim I came up with:
sub merge_xml {
foreach my $repository ('repo1', 'repo2') {
my #xml_files;
my match_xml = sub {
my $filename = $File::Find::dir . '/' . $_;
if ($filename =~ m%/(main|test)\.xml$%) {
push(#xml_files, $filename);
}
};
find($match_xml, $repository);
print Dumper(\#xml_files);
}
}
Might I suggest another alternative. By using a factory function, you can eliminate the need to hand write a find subroutine each time.
A factory is a function that generates another function (or subroutine in this case). You feed it some parameters and it creates a custom subroutine with those parameters bolted in. My example uses a closure but you could also build it with a string eval if the closure is costly for some reason.
sub match_factory {
my ($filespec, $array) = #_;
# Validate arguments
die qq{File spec must be a regex, not "$filespec"\n}
unless ref $filespec eq "Regexp";
die qq{Second argument must be an array reference, not "$array"\n}
unless ref $array eq "ARRAY";
# Generate an anonymous sub to perform the match check
# that creates a closure on $filespec and $array
my $matcher = sub {
# Automatically compare against $_
m/$filespec/ and
push(#$array, $File::Find::name);
};
return $matcher;
}
sub merge_xml {
my #repos = #_ # or qw/foo bar .../;
foreach my $repository (#repos) {
my #matched_files;
find(
match_factory( qr/\/(main|test)\.xml$/, \#matched_files ),
$repository
);
print Dumper(\#matched_files);
}
}
HTH

can a variable be defined in perl whose value cannot be changed in a subroutine?

In the following script, I declare and modify #basearray in the main program. Inside the dosomething subroutine, I access #basearray, assign it to an array local to the script, and modify the local copy. Because I have been careful to change the value only of local variables inside the subroutine, #basearray is not changed.
If I had made the mistake of assigning a value to #basearray inside the subroutine, though, it would have been changed and that value would have persisted after the call to the subroutine.
This is demonstrated in the 2nd subroutine, doagain.
Also, doagain receives the reference \#basearray as an argument rather than accessing #basearray directly. But going to that additional trouble provides no additional safety. Why do it that way at all?
Is there a way to guarantee that I cannot inadvertently change #basearray inside any subroutine? Any kind of hard safety device that I can build into my code, analogous to use strict;, some combination perhaps of my and local?
Am I correct in thinking that the answer is No, and that the only solution is to not make careless programmer errors?
#!/usr/bin/perl
use strict; use warnings;
my #basearray = qw / amoeba /;
my $count;
{
print "\#basearray==\n";
$count = 0;
foreach my $el (#basearray) { $count++; print "$count:\t$el\n" };
}
sub dosomething
{
my $sb_name = (caller(0))[3];
print "entered $sb_name\n";
my #sb_array=( #basearray , 'dog' );
{
print "\#sb_array==\n";
$count = 0;
foreach my $el (#sb_array) { $count++; print "$count:\t$el\n" };
}
print "return from $sb_name\n";
}
dosomething();
#basearray = ( #basearray, 'rats' );
{
print "\#basearray==\n";
$count = 0;
foreach my $el (#basearray) { $count++; print "$count:\t$el\n" };
}
sub doagain
{
my $sb_name = (caller(0))[3];
print "entered $sb_name\n";
my $sf_array=$_[0];
my #sb_array=#$sf_array;
#sb_array=( #sb_array, "piglets ... influenza" );
{
print "\#sb_array==\n";
$count = 0;
foreach my $el (#sb_array) { $count++; print "$count:\t$el\n" };
}
print "now we demonstrate that passing an array as an argument to a subroutine does not protect it from being globally changed by programmer error\n";
#basearray = ( #sb_array );
print "return from $sb_name\n";
}
doagain( \#basearray );
{
print "\#basearray==\n";
$count = 0;
foreach my $el (#basearray) { $count++; print "$count:\t$el\n" };
}
There isn't a pragma or a keyword or such, but there are well established "good practices," which in this case completely resolve what you reasonably ponder about.
The first sub, dosomething, commits the sin of using variables visible in its scope but defined in the higher scope. Instead, always pass needed data to a subroutine (exceptions are rare, in crystal clear cases).
Directly using data from "outside" defies the idea of a function as an encapsulated procedure, exchanging data with its users via a well defined and clear interface. It entangles ("couples") sections of code that are in principle completely unrelated. In practice, it can also be outright dangerous.
Also, the fact the #basearray is up for grabs in the sub is best considered an accident -- what when that sub gets moved to a module? Or another sub is introduced to consolidate code where #basearray is defined?
The second sub, doagain, nicely takes a reference to that array. Then, to protect the data in the caller, one can copy the caller's array to another one which is local to the sub
sub doagain {
my ($ref_basearray) = #_;
my #local_ba = #$ref_basearray;
# work with local_ba and the caller's basearray is safe
}
The names of local lexical variables are of course arbitrary, but a convention where they resemble the caller's data names may be useful.
Then you can adopt a general practice, for safety, to always copy input variables to local ones. Work directly with references that are passed in only when you want to change the caller's data (relatively rare in Perl). This may hurt efficiency if it's done a lot with sizeable data, or when really large data structures are involved. So perhaps then make an exception and change data via its reference, and be extra careful.
(Putting my comment as answer)
One way to guarantee not changing a variable inside a subroutine is to not change it. Use only lexically scoped variables inside the subroutine, and pass whatever values you need inside the subroutine as arguments to the subroutine. It is a common enough coding practice, encapsulation.
One idea that you can use -- mainly as practice, I would say -- to force yourself to use encapsulation, is to put a block around your "main" code, and place subroutines outside of it. That way, if you should accidentally refer to a (formerly) global variable, use strict will be able to do it's job and produce a fatal error. Before runtime.
use strict;
use warnings;
main: { # lexical scope reduced to this block
my #basearray = qw / amoeba /;
print foo(#basearray); # works
print bar(); # fatal error
} # END OF MAIN lexical scope of #basearray ends here
sub foo {
my #basearray = #_; # encapsulated
return $basearray[1]++;
}
sub bar {
return $basearray[1]++; # out of scope ERROR
}
This will not compile, and will produce the error:
Global symbol "#basearray" requires explicit package name at foo.pl line 15.
Execution of foo.pl aborted due to compilation errors.
I would consider this a training device to force yourself to using good coding practices, and not something to necessarily use in production code.
There are several solutions with various levels of pithiness from "just don't change it" to "use an object or tied array and lock down the update functions". An intermediate solution, not unlike using an object with a getter method, is to define a function that returns your array but can only operate as an rvalue, and to use that function inside subroutines.
my #basearray = (...);
sub basearray { return #basearray }
sub foo {
foreach my $elem (basearray()) {
...
}
#bar = map { $_ *= 2 } basearray(); # ok
#bar = map { $_ *= 2 } #basearray; # modifies #basearray!
}
TLDR: yes, but.
I'll start with the "but". But it's better to design your code so that the variable simply doesn't exist in the scope where the untrusted function is defined.
sub untrusted_function {
...
}
my #basearray = qw( ... ); # declared after untrusted_function
If untrusted_function needs to be able to access the contents of the array, pass it a copy of the array as a parameter, so it can't modify the original.
Now here's the "yes".
You can mark the array as read-only before calling the untrusted function.
Internals::SvREADONLY($_, 1) for #basearray;
Internals::SvREADONLY(#basearray, 1);
Then mark it read-write again after the function has finished.
Internals::SvREADONLY(#basearray, 0);
Internals::SvREADONLY($_, 0) for #basearray;
Using Internals::SvREADONLY(#basearray, $bool) modifies the read-only state of the array itself, preventing elements from being added or removed from it; Internals::SvREADONLY($_, $bool) for #basearray modifies the read-only state of each element in the array too, which you probably want.
Of course, if your array contains references like blessed objects, you then need to consider whether you need to recurse into the references, marking them read-only too. (But can also be a concern with the shallow copy of the array I mentioned in the preferred solution!)
So yes, it is possible to prevent a sub from accidentally modifying a variable by marking that variable read-only before calling the sub, but it's a better idea to restructure your code so the sub simply doesn't have access to the variable at all.
Yes, but.
Here is a prototype that uses #TLP's answer.
#!/usr/bin/perl
use strict; use warnings;
{ # block_main BEG
my #basearray = qw / amoeba elephants sequoia /;
print join ( ' ', 'in main, #basearray==', join ( ' ', #basearray ), "\n" );
print "Now we call subroutine to print it:\n"; enumerateprintarray ( \#basearray );
my $ref_basearray = changearray ( \#basearray, 'wolves or coyotes . . . ' );
#basearray = #$ref_basearray;
print "Now we call subroutine to print it:\n"; enumerateprintarray ( \#basearray );
} # block_main END
sub enumerateprintarray
{
my $sb_name = (caller(0))[3];
#print join ( '' , #basearray ); # mortal sin! for in the day that thou eatest thereof thou shalt surely die.
my $sb_exact_count_arg = 1;
die "$sb_name must have exactly $sb_exact_count_arg arguments" unless ( ( scalar #_ ) == $sb_exact_count_arg );
my $sf_array = $_[0];
my #sb_array = #$sf_array;
my $sb_count = 0;
foreach (#sb_array)
{
$sb_count++;
print "\t$sb_count:\t$_\n";
}
}
sub changearray
{
my $sb_name = (caller(0))[3];
#print join ( '' , #basearray ); # in the day that thou eatest thereof thou shalt surely die.
my $sb_exact_count_arg = 2;
die "$sb_name must have exactly $sb_exact_count_arg arguments" unless ( ( scalar #_ ) == $sb_exact_count_arg );
my ( $sf_array, $addstring ) = #_;
my #sb_array = #$sf_array;
push #sb_array, $addstring;
return ( \#sb_array );
}

Mojolicious: Can't call method "render" on an undefined value

I'm getting this error and cannot understand why this happens. It happens when I jump to another subroutine. Perhaps there is something I need to understand about Mojolicious on why this happens.
Here is the source code of my program:
#!/usr/bin/perl
use Mojolicious::Lite;
get '/' => sub { &start_home; };
app->start;
sub start_home {
my $d = shift;
my $something = $d->param('something');
### Do things with $something.... etc.. etc..
&go_somewhere_else; ### Go somewhere else
}
sub go_somewhere_else {
my $c = shift;
$c->render(text => "Hello World!");
### End of program
}
I am passing a value on to the renderer and there is a value - Why would it say it is undefined? My understanding is that this only happens if you jump to a subroutine and try to render output.
My operating system is Windows and I am using Strawberry Perl.
You need to pass the context object $c/$d to your second function. The undefined value is your $c in go_somewhere_else, because you call it without a parameter.
Initially, to make it work, do this.
sub start_home {
my $d = shift;
my $something = $d->param('something');
go_somewhere_else($d);
}
You are now passing the context, which you named $d (that's not the conventional name), to the other function, and the warning will go away.
That's because the form &subname; without parenthesis () makes #_ (that's the list of arguments to the function) available inside of go_somewhere_else, but because you shifted $d off, #_ is now empty, and hence your $c inside go_somewhere_else is undef.
Alternatively, you could also change the shift to an assignment with #_. But please, don't do that!
sub start_home {
my ( $d ) = #_;
my $something = $d->param('something');
&go_somewhere_else;
}
There are more things odd to the point of almost wrong here.
get '/' => sub { &start_home; };
You are currying the the start_home function, but you are not actually adding another parameter. I explained above why this works. But it's not great. In fact, it's confusing and complicated.
Instead, you should use a code reference for the route.
get '/' => \&start_home;
Inside of start_home, you should call your context $c as is the convention. You should also not use the ampersand & notation for calling functions. That changes the behavior in a way you most certainly do not want.
sub start_home {
my $c = shift;
my $something = $c->param('something');
# ...
go_somewhere_else($c);
}
To learn more about how function calls work in Perl, refer to perlsub.

Moose traits for multdimensional data structures

Breaking out handling an internal variable from calls on the variable into calls on the object is easy using the Attribute::Native::Trait handlers. However, how do you deal with multiple data structures? I can't think of any way to handle something like the below without making the stash an arrayref of My::Stash::Attribute objects, which in turn contain an arrayref of My::Stash::Subattribute objects, which contains an arrayref My::Stash::Instance objects. This includes a lot of munging and coercing the data each level down the stack as I sort things out.
Yes, I can store the items as a flat array and then grep it on every read, but in a situation with frequent reads and that most calls are reads, grepping against a large list of array items is a lot of processing every read vs just indexing the items internally in the way needed.
Is there a MooseX extension that can handle this sort of thing via handlers creating methods, instead of just treating the read accessor as the hashref it is and modifying it in place? Or am I just best off forgetting about doing things like this via method call and just doing it as-is?
use strict;
use warnings;
use 5.010;
package My::Stash;
use Moose;
has '_stash' => (is => 'ro', isa => 'HashRef', default => sub { {} });
sub add_item {
my $self = shift;
my ($item) = #_;
push #{$self->_stash->{$item->{property}}{$item->{sub}}}, $item;
}
sub get_items {
my $self = shift;
my ($property, $subproperty) = #_;
return #{$self->_stash->{$property}{$subproperty}};
}
package main;
use Data::Printer;
my $stash = My::Stash->new();
for my $property (qw/foo bar baz/) {
for my $subproperty (qw/fazz fuzz/) {
for my $instance (1 .. 2) {
$stash->add_item({ property => $property, sub => $subproperty, instance => $instance })
}
}
}
p($_) for $stash->get_items(qw/baz fuzz/);
These are very esoteric:
sub add_item {
my $self = shift;
my ($item) = #_;
push #{$self->_stash->{$item->{property}}{$item->{sub}}}, $item;
}
So add_item takes an hashref item, and pushes it onto an array key in stash indexed by it's own keys property, and sub.
sub get_items {
my $self = shift;
my ($property, $subproperty) = #_;
return #{$self->_stash->{$property}{$subproperty}};
}
Conversely, get_item takes two arguments, a $property and a $subproperty and it retrieves the appropriate elements in a Array in a HoH.
So here are the concerns into making it MooseX:
There is no way in a non-Magic hash to insist that only hashes are values -- this would be required for predictable behavior on the trait. As in your example, what would you expect if _stash->{$property} resolved to a scalar.
add_item has it's depth hardcoded to property and sub.
returning arrays is bad, it requires all of the elements to be pushed onto the stack (return refs)
Now firstly, I don't see why a regular Moose Hash trait couldn't accept array refs for both the setter and getter.
->set( [qw/ key1 key2/], 'foo' )
->get( [qw/ key1 key2/] )
This would certainly make your job easier, if your destination wasn't an array:
sub add_item {
my ( $self, $hash ) = #_;
$self->set( [ $hash->{property}, $hash->{subproperty} ], $hash );
}
# get items works as is, just pass in an `ArrayRef`
# ie, `->get([$property, $subproperty])`
When it comes to having the destination be an array than a hash slot, I assume you'd just have to build that into a totally different helper in the trait, push_to_array_or_create([$property, $subproperty], $value). I'd still just retrieve it with the fictional get helper specified above. auto_deref type functionality is a pretty bad idea.
In short ask a core developer on what they would think about extending set and get in this context to accept ArrayRefs as keys and act appropriately. I can't imagine there is a useful default for ArrayRef keys (I don't think regular stringification would be too useful.).

returning a lazily-computed scalar, in perl

I'm trying to add some functionality to our code base by using tied scalars.
We have a function which is specified to return scalars. I thought I could add some features to the system by tie-ing these scalars before returning them, but it looks like the FETCH method is called just before the return, which results in an untied scalar being returned.
Is there any way around this?
I really want to keep the subroutine's interface (returning scalars) intact if it's at all possible.
use strict;
use warnings;
main();
sub GetThing{
my $thing;
tie $thing, 'mything', #_;
return $thing;
}
sub main {
my %m;
$m{pre} = GetThing('Fred');
print "1\n";
print $m{pre};
print "2\n";
print $m{pre};
print "3\n";
}
package mything;
require Tie::Scalar;
my #ISA = qw(Tie::StdScalar);
sub TIESCALAR {
my $class = shift;
bless {
name => shift || 'noname',
}, $class;
}
sub FETCH {
my $self = shift;
print "ACCESS ALERT!\n";
return " NAME: '$self->{name}'\n";
}
Desired output:
1
ACCESS ALERT!
NAME: 'Fred'
2
ACCESS ALERT!
NAME: 'Fred'
3
I can get the desired output by returning a reference, and dereferencing on each access, but that ruins our established interface, and makes it more confusing for our users.
--Buck
As DVK said, tie applies to containers, so isn't useful for returned values.
For that, you use overloading. An example (not all the possible overloaded operations are supplied; see http://perldoc.perl.org/overload.html#Minimal-set-of-overloaded-operations):
use strict;
use warnings;
main();
sub GetThing{
my $thing;
$thing = "mything"->new(#_);
return $thing;
}
sub main {
my %m;
$m{pre} = GetThing('Fred');
print "1\n";
print $m{pre};
print "2\n";
print $m{pre};
print "3\n";
}
package mything;
use overload 'fallback' => 1, '""' => 'FETCH';
sub new {
my $class = shift;
bless {
name => shift || 'noname',
}, $class;
}
sub FETCH {
my $self = shift;
print "ACCESS ALERT!\n";
return " NAME: '$self->{name}'\n";
}
As mentioned in other answers, tie applies to containers, and not to values, so there is no way to assign a tied variable to another variable and retain the tied properties.
Since assignment is out, you need to pass the container into the GetThing routine. You can do this by reference as follows:
use strict;
use warnings;
main();
sub GetThing{
tie ${$_[1]}, 'mything', $_[0];
}
sub main {
my %m;
GetThing('Fred' => \$m{pre});
print "1\n";
print $m{pre};
print "2\n";
print $m{pre};
print "3\n";
}
package mything;
require Tie::Scalar;
my #ISA = qw(Tie::StdScalar);
sub TIESCALAR {
my $class = shift;
bless {
name => shift || 'noname',
}, $class;
}
sub FETCH {
my $self = shift;
print "ACCESS ALERT!\n";
return " NAME: '$self->{name}'\n";
}
which produces the correct output.
However, if you want to retain the assignment, you will need to use overloading, which applies to values (actually to objects, but they themselves are values). Without more detail on your intended purpose it is hard to give a complete answer, but this will meet your stated requirements:
use strict;
use warnings;
main();
sub GetThing{
return mything->new( shift );
}
sub main {
my %m;
$m{pre} = GetThing('Fred');
print "1\n";
print $m{pre};
print "2\n";
print $m{pre};
print "3\n";
}
package mything;
sub new {
my $class = shift;
bless {
name => shift || 'noname',
}, $class;
}
use overload '""' => sub { # '""' means to overload stringification
my $self = shift;
print "ACCESS ALERT!\n";
return " NAME: '$self->{name}'\n";
};
Both ties and overloads can get complicated, so read through all of the documentation if anything is not clear.
First, the exact method of doing what you are proposing seems technically impossible:
Tied variables have the tie attached to the variable itself, not to its value.
In Perl, subroutine's return values are returned by value, meaning you take the value passed to return, access it (in you case, accessing the tied variable and calling FETCH in the process) - and then copy that value! Which means that what the caller gets is a scalar VALUE, not a scalar variable (tied or untied).
Your confusion, in short, seems to stem from mixing together variables (locations in program's symbol table) and values stored in those variables.
Second, you were somewhat unclear as to what exactly you are trying to achieve, so it's hard to propose how to achieve what you want. But assuming, based on your description, that you wanted to call some method upon subroutine's return (possibly passing it the return value), you CAN do that.
To do so, you need to employ what fancy people call aspect programming. The politically (and technically) correct way of doing it in Perl is by using Moose.
However, you can DIY it, by basically replacing the original method with a wrapper method.
The exact mechanics of both Moose and DIY approaches can be seen in the first two answers to the following SO question, so I won't copy/paste them here, hope you don't mind:
Simulating aspects of static-typing in a duck-typed language
If you're feeling adventurous, you could also use the Scalar::Defer module which provides a general-purpose mechanism for a scalar variable to compute a value lazily, either once or on each access.