Controlling State from outside of a StatefulWidget - flutter

I'm trying to understand the best practice for controlling a StatefulWidget's state outside of that Widgets State.
I have the following interface defined.
abstract class StartupView {
Stream<String> get onAppSelected;
set showActivity(bool activity);
set message(String message);
}
I would like to create a StatefulWidget StartupPage that implements this interface. I expect the Widget to do the following:
When a button is pressed it would send an event over the onAppSelected stream. A controller would listen to this event and perform some action ( DB call, service request, etc ).
The controller can call showActivity or set message to have the view show progress with a message.
Because a Stateful Widget does not expose its State as a property, I don't know the best approach for accessing and modifying the State's attributes.
The way I would expect to use this would be something like this:
Widget createStartupPage() {
var page = new StartupPage();
page.onAppSelected.listen((app) {
page.showActivity = true;
//Do some work
page.showActivity = false;
});
}
I've thought about instantiating the Widget by passing in the state I want it to return in createState() but that feels wrong.
Some background on why we have this approach: We currently have a Dart web application. For view-controller separation, testability, and forward-thinking towards Flutter, we decided that we would create an interface for every view in our application. This would allow a WebComponent or a Flutter Widget to implement this interface and leave all of the controller logic the same.

There are multiple ways to interact with other stateful widgets.
1. findAncestorStateOfType
The first and most straightforward is through context.findAncestorStateOfType method.
Usually wrapped in a static method of the Stateful subclass like this :
class MyState extends StatefulWidget {
static of(BuildContext context, {bool root = false}) => root
? context.findRootAncestorStateOfType<_MyStateState>()
: context.findAncestorStateOfType<_MyStateState>();
#override
_MyStateState createState() => _MyStateState();
}
class _MyStateState extends State<MyState> {
#override
Widget build(BuildContext context) {
return Container();
}
}
This is how Navigator works for example.
Pro:
Easiest solution
Con:
Tempted to access State properties or manually call setState
Requires to expose State subclass
Don't use this method when you want to access a variable. As your widget may not reload when that variable change.
2. Listenable, Stream and/or InheritedWidget
Sometimes instead of a method, you may want to access some properties. The thing is, you most likely want your widgets to update whenever that value changes over time.
In this situation, dart offer Stream and Sink. And flutter adds on the top of it InheritedWidget and Listenable such as ValueNotifier. They all do relatively the same thing: subscribing to a value change event when coupled with a StreamBuilder/context.dependOnInheritedWidgetOfExactType/AnimatedBuilder.
This is the go-to solution when you want your State to expose some properties. I won't cover all the possibilities but here's a small example using InheritedWidget :
First, we have an InheritedWidget that expose a count :
class Count extends InheritedWidget {
static of(BuildContext context) =>
context.dependOnInheritedWidgetOfExactType<Count>();
final int count;
Count({Key key, #required Widget child, #required this.count})
: assert(count != null),
super(key: key, child: child);
#override
bool updateShouldNotify(Count oldWidget) {
return this.count != oldWidget.count;
}
}
Then we have our State that instantiate this InheritedWidget
class _MyStateState extends State<MyState> {
int count = 0;
#override
Widget build(BuildContext context) {
return Count(
count: count,
child: Scaffold(
body: CountBody(),
floatingActionButton: FloatingActionButton(
onPressed: () {
setState(() {
count++;
});
},
),
),
);
}
}
Finally, we have our CountBody that fetch this exposed count
class CountBody extends StatelessWidget {
#override
Widget build(BuildContext context) {
return Center(
child: Text(Count.of(context).count.toString()),
);
}
}
Pros:
More performant than findAncestorStateOfType
Stream alternative is dart only (works with web) and is strongly integrated in the language (keywords such as await for or async*)
Automic reload of the children when the value change
Cons:
More boilerplate
Stream can be complicated
3. Notifications
Instead of directly calling methods on State, you can send a Notification from your widget. And make State subscribe to these notifications.
An example of Notification would be :
class MyNotification extends Notification {
final String title;
const MyNotification({this.title});
}
To dispatch the notification simply call dispatch(context) on your notification instance and it will bubble up.
MyNotification(title: "Foo")..dispatch(context)
Note: you need put above line of code inside a class, otherwise no context, can NOT call notification.
Any given widget can listen to notifications dispatched by their children using NotificationListener<T> :
class _MyStateState extends State<MyState> {
#override
Widget build(BuildContext context) {
return NotificationListener<MyNotification>(
onNotification: onTitlePush,
child: Container(),
);
}
bool onTitlePush(MyNotification notification) {
print("New item ${notification.title}");
// true meaning processed, no following notification bubbling.
return true;
}
}
An example would be Scrollable, which can dispatch ScrollNotification including start/end/overscroll. Then used by Scrollbar to know scroll information without having access to ScrollController
Pros:
Cool reactive API. We don't directly do stuff on State. It's State that subscribes to events triggered by its children
More than one widget can subscribe to that same notification
Prevents children from accessing unwanted State properties
Cons:
May not fit your use-case
Requires more boilerplate

You can expose the state's widget with a static method, a few of the flutter examples do it this way and I've started using it as well:
class StartupPage extends StatefulWidget {
static StartupPageState of(BuildContext context) => context.ancestorStateOfType(const TypeMatcher<StartupPageState>());
#override
StartupPageState createState() => new StartupPageState();
}
class StartupPageState extends State<StartupPage> {
...
}
You can then access the state by calling StartupPage.of(context).doSomething();.
The caveat here is that you need to have a BuildContext with that page somewhere in its tree.

There is another common used approach to have access to State's properties/methods:
class StartupPage extends StatefulWidget {
StartupPage({Key key}) : super(key: key);
#override
StartupPageState createState() => StartupPageState();
}
// Make class public!
class StartupPageState extends State<StartupPage> {
int someStateProperty;
void someStateMethod() {}
}
// Somewhere where inside class where `StartupPage` will be used
final startupPageKey = GlobalKey<StartupPageState>();
// Somewhere where the `StartupPage` will be opened
final startupPage = StartupPage(key: startupPageKey);
Navigator.push(context, MaterialPageRoute(builder: (_) => startupPage);
// Somewhere where you need have access to state
startupPageKey.currentState.someStateProperty = 1;
startupPageKey.currentState.someStateMethod();

I do:
class StartupPage extends StatefulWidget {
StartupPageState state;
#override
StartupPageState createState() {
this.state = new StartupPageState();
return this.state;
}
}
class DetectedAnimationState extends State<DetectedAnimation> {
And outside just startupPage.state

While trying to solve a similar problem, I discovered that ancestorStateOfType() and TypeMatcher have been deprecated. Instead, one has to use findAncestorStateOfType(). However as per the documentation, "calling this method is relatively expensive". The documentation for the findAncestorStateOfType() method can be found here.
In any case, to use findAncestorStateOfType(), the following can be implemented (this is a modification of the correct answer using the findAncestorStateOfType() method):
class StartupPage extends StatefulWidget {
static _StartupPageState of(BuildContext context) => context.findAncestorStateOfType<_StartupPageState>();
#override
_StartupPageState createState() => new _StartupPageState();
}
class _StartupPageState extends State<StartupPage> {
...
}
The state can be accessed in the same way as described in the correct answer (using StartupPage.of(context).yourFunction()). I wanted to update the post with the new method.

You can use eventify
This library provide mechanism to register for event notifications with emitter
or publisher and get notified in the event of an event.
You can do something like:
// Import the library
import 'package:eventify/eventify.dart';
final EventEmitter emitter = new EventEmitter();
var controlNumber = 50;
List<Widget> buttonsGenerator() {
final List<Widget> buttons = new List<Widget>();
for (var i = 0; i < controlNumber; i++) {
widgets.add(new MaterialButton(
// Generate 10 Buttons afterwards
onPressed: () {
controlNumber = 10;
emitter.emit("updateButtonsList", null, "");
},
);
}
}
class AState extends State<ofYourWidget> {
#override
Widget build(BuildContext context) {
List<Widget> buttons_list = buttonsGenerator();
emitter.on('updateButtonsList', null, (event, event_context) {
setState(() {
buttons_list = buttonsGenerator();
});
});
}
...
}
I can't think of anything which can't be achieved by event driven programming. You are limitless!
"Freedom cannot be bestowed — it must be achieved."
- Elbert Hubbard

Have you considered lifting the state to the parent widget? It is a common, though less ideal than Redux, way to manage state in React as far as I know, and this repository shows how to apply the concept to a Flutter app.

Related

How should I implement the init method? In a stateful or stateless widget?

What is the rule of thumb to use an initial method for a widget. Shall I use the:
A. classical stateful widget approach?
Or is it better to stick with the B. stateless widget approach?
Both seem to work from my testing. In terms of code reduction, it seems the B. approach is better, shorter, cleaner, and more readable. How about the performance aspect? Anything else that I could be missing?
Initializing a controller should be a one-time operation; if you do it on a StatelessWidget's build method, it will be triggered every time this widget is rebuilt. If you do it on a StatefulWidget's initState, it will only be called once, when this object is inserted into the tree when the State is initialized.
I was looking for initializing some values based on values passed in constructor in Stateless Widget.
Because we all know for StatefulWidget we have initState() overridden callback to initialize certain values etc. But for Stateless Widget no option is given by default. If we do in build method, it will be called every time as the view update. So I am doing the below code. It works. Hope it will help someone.
import 'package:flutter/material.dart';
class Sample extends StatelessWidget {
final int number1;
final int number2;
factory Sample(int passNumber1, int passNumber2, Key key) {
int changeNumber2 = passNumber2 *
2; //any modification you need can be done, or else pass it as it is.
return Sample._(passNumber1, changeNumber2, key);
}
const Sample._(this.number1, this.number2, Key key) : super(key: key);
#override
Widget build(BuildContext context) {
return Text((number1 + number2).toString());
}
}
Everything either a function or something else in widget build will run whenever you do a hot reload or a page refreshes but with initState it will run once on start of the app or when you restart the app in your IDE for example in StatefulWidget widget you can use:
void initState() {
super.initState();
WidgetsBinding.instance!
.addPostFrameCallback((_) => your_function(context));
}
To use stateful functionalities such as initState(), dispose() you can use following code which will give you that freedom :)
class StatefulWrapper extends StatefulWidget {
final Function onInit;
final Function onDespose;
final Widget child;
const StatefulWrapper(
{super.key,
required this.onInit,
required this.onDespose,
required this.child});
#override
State<StatefulWrapper> createState() => _StatefulWrapperState();
}
class _StatefulWrapperState extends State<StatefulWrapper> {
#override
void initState() {
// ignore: unnecessary_null_comparison
if (widget.onInit != null) {
widget.onInit();
}
super.initState();
}
#override
Widget build(BuildContext context) {
return widget.child;
}
#override
void dispose() {
if (widget.onDespose != null) {
widget.onDespose();
}
super.dispose();
}
}
Using above code you can make Stateful Wrapper which contains stateful widget's method.
To use Stateful Wrapper in our widget tree you can just wrap your widget with Stateful Wrapper and provide the methods or action you want to perform on init and on dispose.
Code available on Github
NOTE: You can always add or remove method from Stateful Wrapper Class according to your need!!
Happy Fluttering!!

Is it possible to have both a stateful widgets and a stateless widget as subtypes of another class?

I recently tried to create an abstract widget, that has then both a stateless and a stateful implementation, which both can be accessed via factory-methods.
Below I added a minimal example of the only real working solution I have figured out that works for my use case, but it leaves me with some things to be desired.
For example with this solution, I have to declare and override every variable in the sub-classes, while I would really like to rely on the fact that they are subtypes and implicitly have those variables.
Has anyone of you ever needed to do a similar thing? Have you worked out a different approach?
For those concerned about as to why I would need this: I wanted to make a singular Button-Class for my App, that then has different implementations for specific styles of buttons (regular button, a 'striped' button, a button that 'loads' as the user scrolls down a page and becomes active once the user reached the end of the page, etc.). That way I could then simply call 'Button.implementation' wherever i needed a specific button, and have all the button-related Code in the same place.
Cheers.
abstract class A {
final int intellect;
A(this.intellect);
factory A.giveMeB(int intellect) {
return _B(intellect);
}
factory A.giveMeC(int intellect) {
return _C(intellect);
}
}
class _B extends StatelessWidget implements A {
#override
final int intellect;
_B(this.intellect);
#override
Widget build(BuildContext context) {
return SizedBox.shrink();
}
}
class _C extends StatefulWidget implements A {
#override
final int intellect;
const _C(this.intellect, {Key key}) : super(key: key);
#override
_CState createState() => _CState();
}
class _CState extends State<_C> {
#override
Widget build(BuildContext context) {
return Container();
}
}

Flutter: How can I avoid recreating the model for parts of the application?

My app uses a set of Card()s inside a PageView(), each card has multiple text lines.
The user gives input for each line (e.g. modifying the text etc.).
I want to keep this input for a while.
This is how my code looks at the moment, abstractly speaking:
class MyCard extends StatefulWidget {
final List<Widget> _myLines = [];
#override
State<StatefulWidget> createState() => MyCardState();
}
class MyCardState extends State<MyCard> {
...
#override
Widget build(BuildContext context) {
...
widget._myLines.add(ChangeNotifierProvider(
create: (context) => MyLineModel(context, lineText),
child: RecipeLine())
...
}
}
This doesn't work well:
As soon as I swipe left / right through the PageView onto other cards and then swipe back, the Card is being built again. This also leads to a rebuild of MyLineModel, which in turn erases all the user's input.
How can I avoid the rebuild of MyLineModel and keep the user's input?
You can solve this in 2 ways:
Create the model outside the widget and pass the model for the widget, as a variable to a constructor for example, or using Provider or any other technique of Dependency Injection.
Using any of the KeepAlive APIs, such as the AutomaticKeepAliveClientMixin as:
class MyCardState extends State<MyCard> with AutomaticKeepAliveClientMixin {
...
#override
bool get wantKeepAlive => true;
}
As the official documentation states, we can simply use the ChangeNotifierProvider.value() constructor...
In the original code:
class MyCardState extends State<MyCard> {
...
#override
Widget build(BuildContext context) {
...
widget._myLines.add(ChangeNotifierProvider.value(
value: MyLineModel(context, lineText),
child: RecipeLine())
...
}
}

What's the design benefit of Flutter's (Widget)State/StatefulWidget pattern?

My docs and Flutter videos, the explanation of the design of the StatefulWidget (+(Widget)State) is that it:
promotes a declarative design (good)
formalizes the process by which Flutter to efficiently decide which components need to be re-rendered (also good)
From the example:
class MyHomePage extends StatefulWidget {
MyHomePage({Key key, this.title}) : super(key: key);
final String title;
#override
_MyHomePageState createState() => new _MyHomePageState();
}
class _MyHomePageState extends State<MyHomePage> {
int _counter = 0;
void _incrementCounter() {
setState(() {
_counter++;
});
}
#override
Widget build(BuildContext context) {...}
}
However:
since we have to explicitly remember call setState in order to invalidate the state, is this really a declarative design?
Flutter doesn't automatically detect changes in the State object and decide to call build (although it could have), and so it doesn't really formalize/automate/make-safe the invalidation of view components. Since we have to explicitly call setState, what's the benefit of the Flutter's (Widget)State/StatefulWidget pattern over, let's say:
class MyHomePage extends StatefulWidget // Define dirty method
{
MyHomePage({Key key, this.title}) : super(key: key);
final String title;
int _counter = 0;
_incrementCounter() {
_counter++;
this.dirty(); // Require the view to be rebuilt. Arranges generateView to be called.
}
#override
Widget generateView(BuildContext context) {return ... rendering description containing updated counter ... ;}
}
... which would place the same burden of marking the UI dirty on the programmer, is no less decalrative, and avoids additional abstraction that obfuscates the intention of the program.
What have I missed? What's the benefit of separating of StatefulWidget from (Widget)State in Flutter?
[Before people chime in with MVC comments, note that the Flutter model rather explicitly only manages only the widget's state and its tightly coupled to the UI's Widget through the build method - there is no separation of concern here and it doesn't have a lot to say about larger application state that's not attached to a view.]
[Also, moderators, these not the same questions: Why does Flutter State object require a Widget?, What is the relation between stateful and stateless widgets in Flutter?. My question is one about what's the benefit of the present design, not how this design works.]
Update: #Rémi Rousselet -- Here's a declarative example with only a new state class needing to be declared. With some work, you could even get rid of that (though it may not be better).
This way of declaring interaction with need didn't require (the user) declaring two new circularly type-referencing class, and the widget that is changing in response to state is decoupled from the state (its constructed a pure function of the state and does not need to allocate the state).
This way of doing things doesn't survive hot-reload. (sad face).
I suspect this is more of an issue with hot-reload, but if there's a way to make it work it would be great,
import 'dart:collection';
import 'package:flutter/material.dart';
////////////////////////////////
// Define some application state
class MyAppState with ChangeSubscribeable<MyAppState> {
/***
* TODO. Automate notifyListeners on setter.
* Binds changes to the widget
*/
int _counter;
get counter => _counter;
set counter(int c) {
_counter = c;
notifyListeners(); // <<<<<< ! Calls ... .setState to invalidate widget
}
increment() {
counter = _counter + 1;
}
MyAppState({int counter: 0}) {
_counter = counter;
}
}
void main() => runApp(MyApp5());
class MyApp5 extends StatelessWidget {
#override
Widget build(BuildContext context) {
// Declare the mutable state.
// Note because the state is not coupled to any particular widget
// its possible to easily share the state between concerned.
// StateListeningWidgets register for, and are notified on changes to
// the state.
var state = new MyAppState(counter: 5);
return MaterialApp(
title: 'Flutter Demo',
home: Scaffold(
appBar: AppBar(
title: Text('Flutter Demo'),
),
body: Center(
child: Column(
children: [
// When the button is click, increment the state
RaisedButton(
onPressed: () => {
state.increment(),
print("Clicked. New state: ${state.counter}")
},
child: Text('Click me'),
),
// Listens for changes in state.
StateListeningWidget(
state,
// Construct the actual widget based on the current state
// A pure function of the state.
// However, is seems closures are not hot-reload.
(context, s) => new Text("Counter4 : ${s.counter}"),
),
],
))),
);
}
}
// //////////////////////
// Implementation
// This one is the onChange callback should accept the state.
//typedef OnChangeFunc<ARG0> = void Function(ARG0);
typedef OnChangeFunc = void Function();
mixin ChangeSubscribeable<STATE> {
final _listener2Notifier =
new LinkedHashMap<Object, OnChangeFunc>(); // VoidFunc1<STATE>>();
List<OnChangeFunc> get _listeners => List.from(_listener2Notifier.values);
void onChange(listenerKey, OnChangeFunc onChange) {
// onChange(listenerKey, VoidFunc1<STATE> onChange) {
assert(!_listener2Notifier.containsKey(listenerKey));
_listener2Notifier[listenerKey] = onChange;
print("Num listeners: ${_listener2Notifier.length}");
}
void removeOnChange(listenerKey) {
if (_listener2Notifier.containsKey(listenerKey)) {
_listener2Notifier.remove(listenerKey);
}
}
void notifyListeners() {
// _listener2Notifier.forEach((key, value)=>value(state));
// Safer, in-case state-update triggers add/remove onChange:
// Call listener
_listeners.forEach((value) => value());
}
}
typedef StateToWidgetFunction<WIDGET extends Widget,
STATE extends ChangeSubscribeable>
= WIDGET Function(BuildContext, STATE);
void noOp() {}
class _WidgetFromStateImpl<WIDGET extends Widget,
STATE extends ChangeSubscribeable> extends State<StatefulWidget> {
STATE _state;
// TODO. Make Widget return type more specific.
StateToWidgetFunction<WIDGET, STATE> stateToWidgetFunc;
_WidgetFromStateImpl(this.stateToWidgetFunc, this._state) {
updateState(){setState(() {});}
this._state.onChange(this, updateState);
}
#override
Widget build(BuildContext context) => stateToWidgetFunc(context, this._state);
#override
dispose() {
_state.removeOnChange(this);
super.dispose();
}
}
class StateListeningWidget<WIDGET extends Widget,
STATE extends ChangeSubscribeable> extends StatefulWidget {
STATE _watched_state;
StateToWidgetFunction<WIDGET, STATE> stateToWidgetFunc;
StateListeningWidget(this._watched_state, this.stateToWidgetFunc) {}
#override
State<StatefulWidget> createState() {
return new _WidgetFromStateImpl<WIDGET, STATE>(
stateToWidgetFunc, _watched_state);
}
}
I've been directed at the ChangeProvider pattern: https://github.com/flutter/samples/blob/master/provider_counter/lib/main.dart
class MyHomePage extends StatelessWidget {
#override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(title: Text('Flutter Demo Home Page'),),
body: Center(
child: Column(
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[
Text('You have pushed the button this many times:'),
Consumer<Counter>( // <<< Pure. Hidden magic mutable parameter
builder: (context, counter, child) => Text(
'${counter.value}',
style: Theme.of(context).textTheme.display1,
),),],),),
floatingActionButton: FloatingActionButton(
onPressed: () =>
// <<< Also a hidden magic parameter
Provider.of<Counter>(context, listen: false).increment(),
tooltip: 'Increment',
child: Icon(Icons.add),
),
);
}
}
... but this also suffers problems:
its not clear to reader of what the state requirements are or how to provide them -- the interface (at least in this github example HomePage) example does not require Counter as a formal parameter. Here we have new HomePage() that has configuration that is not provided in its parameters - this type of access suffers similar problems to global variables.
access to state is by class type, not object reference - so its not clear (or at least straightforward) what to do if you want two objects of the same type (e.g. shippingAddress, billingAddress) that are peers in the model. To resolve this, the state model likely needs to be refactored.
I think I'm with user48956 on this. (Catchy name by the way).
Unfortunately, the Flutter authors seem to have suffixed their View class with the word 'State'. This has rather confused the whole Flutter state management discussions.
I think the purpose of the two classes is actually to make the painting more performant but it comes with a very heavy plumbing cost for us developers.
As to the naming convention:
The dirty flag approach allows the widget painter to optimise their painting without knowing about our state, thereby alleviation the need for two classes.
Also generateView() is kinda meaningful (unless of course, you start using these widgets to hold model-fragments (as per Package:provider).

Best place to do a check for auth session is still alive in flutter

I am building an app which is using native (iOS and Android) framework to do an authentication. I created a plugin which wraps all framework exposed methods to flutter. I have to check every screen change that user is authenticated and session is alive and if not call framework to do so, what will be the best place in flutter to do such check?
Inside a widget.
Widgets are nearly always where you want to put your logic.
To be exact, what you want is a StatefulWidget that expose an InheritedWidget using a custom static MyInheritedWidget of(BuildContext context) method. InheritedWidget which will possess all the login informations and a few "onChange" methods.
You will then be able to access anywhere inside your app to this InheritedWidget using MyAuth.of(context) and therefore have access to all the needed data.
Usually you'll end up with this :
/// The user data model. May be serializable. Usually immutable
#immutable
class MyUser {
const MyUser({this.name});
final String name;
}
/// The entry point of your global logic.
/// Most of the time, will only take one child as parameter
/// and nothing else. And will also expose a [of] method
class MyAuth extends StatefulWidget {
final Widget child;
const MyAuth({this.child});
/// Fetch the closest [_MyInheritedAuth] from the widget tree
/// using context. And bind the widget possessing that context
/// to reload evytimes the inherited widget changes
static _MyInheritedAuth of(BuildContext context) {
final _MyInheritedAuth inherited = context.inheritFromWidgetOfExactType(_MyInheritedAuth);
return inherited;
}
#override
_MyAuthState createState() => new _MyAuthState();
}
typedef void MyUserNameChange(String name);
/// Your controller. Will handle all the logic and just
/// pass it all to [_MyInheritedAuth]
class _MyAuthState extends State<MyAuth> {
MyUser user;
#override
initState() {
super.initState();
user = const MyUser(name: 'foo');
}
void onUserNameChange(String name) {
setState(() {
user = new MyUser(name: name);
});
}
#override
Widget build(BuildContext context) {
return new _MyInheritedAuth(user: user, editUserName: onUserNameChange, child: widget.child,);
}
}
/// What the other widgets will get when user [MyAuth.of].
/// Inherit from [InheritedWidget] to be able to bind a context
/// to this widget's updates/
class _MyInheritedAuth extends InheritedWidget {
final MyUser user;
final MyUserNameChange editUserName;
const _MyInheritedAuth({ #required this.user, #required this.editUserName, #required Widget child,}): super(child: child);
#override
bool updateShouldNotify(_MyInheritedAuth oldWidget) {
return user != oldWidget.user || editUserName != oldWidget.editUserName;
}
}
And whenever you need to use user infos, you can just do MyAuth.of(context).user.