Possible ways for currying case class constructor in scala - scala

With reference to the link below
Scala: curried constructors
class Person(var name : String, var age : Int, var email : String)
def mkPerson = (n : String) => (a : Int) => (e : String) => new Person(n,a,e)
def makeName(s:String):String="Hello"+s
def makeAge(age:Int):Int=age
def makeEmail(email:String):String=email
val s=mkPerson(makeName("abcd"))
val t1=s(makeAge(2))
val t2=t1(makeEmail("abc#gmail.com"))
I have created methods makeName,makeAge,makeEmail to enrich the values. The actual use case is different
Question
Is there any possible ways to achieve the above through case classes
I don't want to use variables s,t1,t2
Can we achieve the above by Partially applied functions

Not sure curried functions are necessary / helpful in this case, if you're OK with a mkPerson that takes 3 arguments:
case class Person private(name: String, age: Int, email: String)
def makeName(s: String): String = "Hello" + s
def makeAge(age: Int): Int = age
def makeEmail(email: String): String = email
def mkPerson(name: String, age: Int, email: String): Person =
Person(makeName(name), makeAge(age), makeEmail(email))
println(Person("Jane", 29, "jane#mail.com")) // no enrichment: Person(Jane,29,jane#mail.com)
println(mkPerson("Jane", 29, "jane#mail.com")) // enriched: Person(HelloJane,29,jane#mail.com)
Then, if you really need it, you can curry mkPerson:
val curried = (mkPerson _).curried
curried("Jane")(29)("jane#mail.com") // same enriched result

Related

compare case class fields with sub fields of another case class in scala

I have the following 3 case classes:
case class Profile(name: String,
age: Int,
bankInfoData: BankInfoData,
userUpdatedFields: Option[UserUpdatedFields])
case class BankInfoData(accountNumber: Int,
bankAddress: String,
bankNumber: Int,
contactPerson: String,
phoneNumber: Int,
accountType: AccountType)
case class UserUpdatedFields(contactPerson: String,
phoneNumber: Int,
accountType: AccountType)
this is just enums, but i added anyway:
sealed trait AccountType extends EnumEntry
object AccountType extends Enum[AccountType] {
val values: IndexedSeq[AccountType] = findValues
case object Personal extends AccountType
case object Business extends AccountType
}
my task is - i need to write a funcc Profile and compare UserUpdatedFields(all of the fields) with SOME of the fields in BankInfoData...this func is to find which fields where updated.
so I wrote this func:
def findDiff(profile: Profile): Seq[String] = {
var listOfFieldsThatChanged: List[String] = List.empty
if (profile.bankInfoData.contactPerson != profile.userUpdatedFields.get.contactPerson){
listOfFieldsThatChanged = listOfFieldsThatChanged :+ "contactPerson"
}
if (profile.bankInfoData.phoneNumber != profile.userUpdatedFields.get.phoneNumber) {
listOfFieldsThatChanged = listOfFieldsThatChanged :+ "phoneNumber"
}
if (profile.bankInfoData.accountType != profile.userUpdatedFields.get.accountType) {
listOfFieldsThatChanged = listOfFieldsThatChanged :+ "accountType"
}
listOfFieldsThatChanged
}
val profile =
Profile(
"nir",
34,
BankInfoData(1, "somewhere", 2, "john", 123, AccountType.Personal),
Some(UserUpdatedFields("lee", 321, AccountType.Personal))
)
findDiff(profile)
it works, but wanted something cleaner..any suggestions?
Each case class extends Product interface so we could use it to convert case classes into sets of (field, value) elements. Then we can use set operations to find the difference. For example,
def findDiff(profile: Profile): Seq[String] = {
val userUpdatedFields = profile.userUpdatedFields.get
val bankInfoData = profile.bankInfoData
val updatedFieldsMap = userUpdatedFields.productElementNames.zip(userUpdatedFields.productIterator).toMap
val bankInfoDataMap = bankInfoData.productElementNames.zip(bankInfoData.productIterator).toMap
val bankInfoDataSubsetMap = bankInfoDataMap.view.filterKeys(userUpdatedFieldsMap.keys.toList.contains)
(bankInfoDataSubsetMap.toSet diff updatedFieldsMap.toSet).toList.map { case (field, value) => field }
}
Now findDiff(profile) should output List(phoneNumber, contactPerson). Note we are using productElementNames from Scala 2.13 to get the filed names which we then zip with corresponding values
userUpdatedFields.productElementNames.zip(userUpdatedFields.productIterator)
Also we rely on filterKeys and diff.
A simple improvement would be to introduce a trait
trait Fields {
val contactPerson: String
val phoneNumber: Int
val accountType: AccountType
def findDiff(that: Fields): Seq[String] = Seq(
Some(contactPerson).filter(_ != that.contactPerson).map(_ => "contactPerson"),
Some(phoneNumber).filter(_ != that.phoneNumber).map(_ => "phoneNumber"),
Some(accountType).filter(_ != that.accountType).map(_ => "accountType")
).flatten
}
case class BankInfoData(accountNumber: Int,
bankAddress: String,
bankNumber: Int,
contactPerson: String,
phoneNumber: Int,
accountType: String) extends Fields
case class UserUpdatedFields(contactPerson: String,
phoneNumber: Int,
accountType: AccountType) extends Fields
so it was possible to call
BankInfoData(...). findDiff(UserUpdatedFields(...))
If you want to further-improve and avoid naming all the fields multiple times, for example shapeless could be used to do it compile time. Not exactly the same but something like this to get started. Or use reflection to do it runtime like this answer.
That would be a very easy task to achieve if it would be an easy way to convert case class to map. Unfortunately, case classes don't offer that functionality out-of-box yet in Scala 2.12 (as Mario have mentioned it will be easy to achieve in Scala 2.13).
There's a library called shapeless, that offers some generic programming utilities. For example, we could write an extension function toMap using Record and ToMap from shapeless:
object Mappable {
implicit class RichCaseClass[X](val x: X) extends AnyVal {
import shapeless._
import ops.record._
def toMap[L <: HList](
implicit gen: LabelledGeneric.Aux[X, L],
toMap: ToMap[L]
): Map[String, Any] =
toMap(gen.to(x)).map{
case (k: Symbol, v) => k.name -> v
}
}
}
Then we could use it for findDiff:
def findDiff(profile: Profile): Seq[String] = {
import Mappable._
profile match {
case Profile(_, _, bankInfo, Some(userUpdatedFields)) =>
val bankInfoMap = bankInfo.toMap
userUpdatedFields.toMap.toList.flatMap{
case (k, v) if bankInfoMap.get(k).exists(_ != v) => Some(k)
case _ => None
}
case _ => Seq()
}
}

Copying a case class and changing a list of fields

Is there a way to copy a case class in scala using a map of fields and their new values?
I tried a way that included reflection so I would like to avoid that
def copyWithMap(fieldNameValue: Map[String, Option[AnyREF]]): T
when applied to a case class this should make a copy and update the fields that need updating. (specified in the map)
If you want to do this for any generic object then you need some way of mapping the compile-time name of a field to the run-time location of that field in the object. The only built-in mechanism for this is reflection, so you can't do what you want without using reflection (or implementing your own generic reflection mechanism, which seems pointless).
If you know what you have to update before you start, you can do something like this:
scala> case class Person(name: String, age: Int, eyeColour: String)
defined class Person
scala> val p1 = Person("Bill", 24, "blue")
p1: Person = Person(Bill,24,blue)
scala> val p2 = p1.copy(name = "Ben", eyeColour = "brown")
p2: Person = Person(Ben,24,brown)
If you want to make it more generic, maybe something like this would work (setField taken from Duncan McGregor's answer in the linked post and put in implicit class):
implicit class Modify[T](i: T) {
def modify(m: Map[String, Any]): T = {
for ((name, value) <- m) setField(name, value)
i
}
def setField(fieldName: String, fieldValue: Any) = {
i.getClass.getDeclaredFields.find(_.getName == fieldName) match {
case Some(field) =>
field.setAccessible(true)
field.set(i, fieldValue)
case None =>
throw new IllegalArgumentException(s"No field named $fieldName")
}
}
}
case class Person(name: String, age: Int, eyeColour: String)
val p1 = Person("Bill", 24, "blue")
val p2 = p1.copy().modify(Map("name" -> "Ben", "eyeColour" -> "brown"))
// p2: Person = Person(Ben,24,brown)
p1
// res0: Person = Person(Bill,24,blue)

List of strings to case class with inner case classes

Let's say i have 2 cases classes:
case class Money(amount: Int, currency: String)
case class Human(name: String, money: Money)
is there a nice way to "translate" a list of strings to class Human? smth like:
def superMethod[A](params: List[String]): A = ???
val params: List[Any] = List("john", 100, "dollar")
superMethod(params) // => Human("john", Money(100, "dollar"))
so essentially i know type A only in runtime
UPDATE: i found ~ what i was looking for. it seems i can do it via shapeless. example i found in github
Here is an implementation that works for generic classes A.
It relies on runtime reflection (that is, a different TypeTag can be passed to the method at runtime). The following obvious conditions must be fulfilled in order to use this method:
A must be on the class path, or otherwise be loadable by the used class loader
TypeTag must be available for A at the call site.
The actual implementation is in the Deserializer object. Then comes a little demo.
The deserializer:
import scala.reflect.runtime.universe.{TypeTag, Type}
object Deserializer {
/** Extracts an instance of type `A` from the
* flattened `Any` constructor arguments, and returns
* the constructed instance together with the remaining
* unused arguments.
*/
private def deserializeRecHelper(
flattened: List[Any],
tpe: Type
): (Any, List[Any]) = {
import scala.reflect.runtime.{universe => ru}
// println("Trying to deserialize " + tpe + " from " + flattened)
// println("Constructor alternatives: ")
// val constructorAlternatives = tpe.
// member(ru.termNames.CONSTRUCTOR).
// asTerm.
// alternatives.foreach(println)
val consSymb = tpe.
member(ru.termNames.CONSTRUCTOR).
asTerm.
alternatives(0).
asMethod
val argsTypes: List[Type] = consSymb.paramLists(0).map(_.typeSignature)
if (tpe =:= ru.typeOf[String] || argsTypes.isEmpty) {
val h :: t = flattened
(h, t)
} else {
val args_rems: List[(Any, List[Any])] = argsTypes.scanLeft(
(("throwaway-sentinel-in-deserializeRecHelper": Any), flattened)
) {
case ((_, remFs), t) =>
deserializeRecHelper(remFs, t)
}.tail
val remaining: List[Any] = args_rems.last._2
val args: List[Any] = args_rems.unzip._1
val runtimeMirror = ru.runtimeMirror(getClass.getClassLoader)
val classMirror = runtimeMirror.reflectClass(tpe.typeSymbol.asClass)
val cons = classMirror.reflectConstructor(consSymb)
// println("Build constructor arguments array for " + tpe + " : " + args)
val obj = cons.apply(args:_*)
(obj, remaining)
}
}
def deserialize[A: TypeTag](flattened: List[Any]): A = {
val (a, rem) = deserializeRecHelper(
flattened,
(implicitly: TypeTag[A]).tpe
)
require(
rem.isEmpty,
"Superfluous arguments remained after deserialization: " + rem
)
a.asInstanceOf[A]
}
}
Demo:
case class Person(id: String, money: Money, pet: Pet, lifeMotto: String)
case class Money(num: Int, currency: String)
case class Pet(color: String, species: Species)
case class Species(description: String, name: String)
object Example {
def main(args: Array[String]): Unit = {
val data = List("Bob", 42, "USD", "pink", "invisible", "unicorn", "what's going on ey?")
val p = Deserializer.deserialize[Person](data)
println(p)
}
}
Output:
Person(Bob,Money(42,USD),Pet(pink,Species(invisible,unicorn)),what's going on ey?)
Discussion
This implementation is not restricted to case classes, but it requires each "Tree-node-like" class to have exactly one constructor that accepts either
primitive types (Int, Float), or
strings, or
other "Tree-node-like" classes.
Note that the task is somewhat ill-posed: what does it mean to say that all constructor arguments are flattened in a single list? Given the class Person(name: String, age: Int), will the List[Any] contain every single byte of the name as a separate entry? Probably not. Therefore, strings are handled by the deserializer in a special way, and all other collection-like entities are not supported for the same reasons (unclear where to stop parsing, because size of the collection is not known).
In case A is not a generic type, but effectively Human, you can use a companion object to the case class Human:
object Human {
def fromList(list: List[String]): Human = list match {
case List(name, amount, currency) => Human(name, Money(amount.toInt, currency))
case _ => handle corner case
}
}
Which you can call:
Human.fromList(List("john", "100", "dollar"))
To make it safe, don't forget to handle the case of lists whose size wouldn't be 3; and of lists whose 2nd element can't be cast to an Int:
import scala.util.Try
object Human {
def fromList(list: List[String]): Option[Human] = list match {
case List(name, amount, currency) =>
Try(Human(name, Money(amount.toInt, currency))).toOption
case _ => None
}
}
Edit: Based on your last comment, you might find this usefull:
case class Money(amount: Int, currency: String)
case class Human(name: String, money: Money)
case class SomethingElse(whatever: Double)
object Mapper {
def superMethod(list: List[String]): Option[Any] =
list match {
case List(name, amount, currency) =>
Try(Human(name, Money(amount.toInt, currency))).toOption
case List(whatever) => Try(SomethingElse(whatever.toDouble)).toOption
case _ => None
}
}
println(Mapper.superMethod(List("john", 100, "dollar")))
> Some(Human(john,Money(100,dollar)))
println(Mapper.superMethod(List(17d)))
> Some(SomethingElse(17.0))
or alternatively:
object Mapper {
def superMethod[A](list: List[String]): Option[A] =
(list match {
case List(name, amount, currency) =>
Try(Human(name, Money(amount, currency))).toOption
case List(whatever) =>
Try(SomethingElse(whatever.toDouble)).toOption
case _ => None
}).map(_.asInstanceOf[A])
}
println(Mapper.superMethod[Human](List("john", "100", "dollar")))
> Some(Human(john,Money(100,dollar)))
println(Mapper.superMethod[SomethingElse](List("17.2")))
> Some(SomethingElse(17.0))

DSL for safe navigation operator in Scala

I want to build a Scala DSL to convert from a existing structure of Java POJOs to a structure equivalent to a Map.
However the incoming objects structure is very likely to contain a lot of null references, which will result in no value in the output map.
The performance is very important in this context so I need to avoid both reflection and throw/catch NPE.
I have considered already this topic which does not meet with my requirements.
I think the answer may lie in the usage of macros to generate some special type but I have no experience in the usage of scala macros.
More formally :
POJO classes provided by project : (there will be like 50 POJO, nested, so I want a solution which does not require to hand-write and maintain a class or trait for each of them)
case class Level1(
#BeanProperty var a: String,
#BeanProperty var b: Int)
case class Level2(
#BeanProperty var p: Level1,
#BeanProperty var b: Int)
expected behaviour :
println(convert(null)) // == Map()
println(convert(Level2(null, 3))) // == Map("l2.b" -> 3)
println(convert(Level2(Level1("a", 2), 3))) // == Map(l2.p.a -> a, l2.p.b -> 2, l2.b -> 3)
correct implementation but I want an easier DSL for writing the mappings
implicit def toOptionBuilder[T](f: => T) = new {
def ? : Option[T] = Option(f)
}
def convert(l2: Level2): Map[String, _] = l2? match {
case None => Map()
case Some(o2) => convert(o2.p, "l2.p.") + ("l2.b" -> o2.b)
}
def convert(l1: Level1, prefix: String = ""): Map[String, _] = l1? match {
case None => Map()
case Some(o1) => Map(
prefix + "a" -> o1.a,
prefix + "b" -> o1.b)
}
Here is how I want to write with a DSL :
def convertDsl(l2:Level2)={
Map(
"l2.b" -> l2?.b,
"l2.p.a" -> l2?.l1?.a,
"l2.p.b" -> l2?.l1?.b
)
}
Note that it is perfectly fine for me to specify that the property is optional with '?'.
What I want is to generate statically using a macro a method l2.?l1 or l2?.l1 which returns Option[Level1] (so type checking is done correctly in my DSL).
I couldn't refine it down to precisely the syntax you gave above, but generally, something like this might work:
sealed trait FieldSpec
sealed trait ValueFieldSpec[+T] extends FieldSpec
{
def value: Option[T]
}
case class IntFieldSpec(value: Option[Int]) extends ValueFieldSpec[Int]
case class StringFieldSpec(value: Option[String]) extends ValueFieldSpec[String]
case class Level1FieldSpec(input: Option[Level1]) extends FieldSpec
{
def a: ValueFieldSpec[_] = StringFieldSpec(input.map(_.a))
def b: ValueFieldSpec[_] = IntFieldSpec(input.map(_.b))
}
case class Level2FieldSpec(input: Option[Level2]) extends FieldSpec
{
def b: ValueFieldSpec[_] = IntFieldSpec(input.map(_.b))
def l1 = Level1FieldSpec(input.map(_.p))
}
case class SpecArrowAssoc(str: String)
{
def ->(value: ValueFieldSpec[_]) = (str, value)
}
implicit def str2SpecArrowAssoc(str: String) = SpecArrowAssoc(str)
implicit def Level2ToFieldSpec(input: Option[Level2]) = Level2FieldSpec(input)
def map(fields: (String, ValueFieldSpec[_])*): Map[String, _] =
Map[String, Any]((for {
field <- fields
value <- field._2.value
} yield (field._1, value)):_*)
def convertDsl(implicit l2: Level2): Map[String, _] =
{
map(
"l2.b" -> l2.?.b,
"l2.p.a" -> l2.?.l1.a,
"l2.p.b" -> l2.?.l1.b
)
}
Then we get:
scala> val myL2 = Level2(Level1("a", 2), 3)
myL2: Level2 = Level2(Level1(a,2),3)
scala> convertDsl(myL2)
res0: scala.collection.immutable.Map[String,Any] = Map(l2.b -> 3, l2.p.a -> a, l2.p.b -> 2)
Note that the DSL uses '.?' rather than just '?' as the only way I could see around Scala's trouble with semicolon inference and postfix operators (see, eg., #0__ 's answer to scala syntactic suger question).
Also, the strings you can provide are arbitrary (no checking or parsing of them is done), and this simplistic 'FieldSpec' hierarchy will assume that all your POJOs use 'a' for String fields and 'b' for Int fields etc.
With a bit of time and effort I'm sure this could be improved on.

Can I name a tuple (define a structure?) in Scala 2.8?

It does not look very good for me to always repeat a line-long tuple definition every time I need it. Can I just name it and use as a type name? Would be nice to name its fields also instead of using ._1, ._2 etc.
Regarding your first question, you can simply use a type alias:
type KeyValue = (Int, String)
And, of course, Scala is an object-oriented language, so regarding your second about how to specialize a tuple, the magic word is inheritance:
case class KeyValue(key: Int, value: String) extends (Int, String)(key, value)
That's it. The class doesn't even need a body.
val kvp = KeyValue(42, "Hello")
kvp._1 // => res0: Int = 42
kvp.value // => res1: String = "Hello"
Note, however, that inheriting from case classes (which Tuple2 is), is deprecated and may be disallowed in the future. Here's the compiler warning you get for the above class definition:
warning: case class class KV has case class ancestor class Tuple2. This has been deprecated for unduly complicating both usage and implementation. You should instead use extractors for pattern matching on non-leaf nodes.
Type alias is fine for naming your Tuple, but try using a case class instead. You will be able to use named parameters
Example with tuple:
def foo(a : Int) : (Int, String) = {
(a,"bar")
}
val res = foo(1)
val size = res._1
val name= res._2
With a case class:
case class Result( size : Int , name : String )
def foo(a : Int) : Result = {
Result(a,"bar")
}
val res = foo(1)
val size = res.size
val name= res.name
Here's a solution that creates a type alias and a factory object.
scala> type T = (Int, String)
defined type alias T
scala> object T { def apply(i: Int, s: String): T = (i, s) }
defined module T
scala> new T(1, "a")
res0: (Int, String) = (1,a)
scala> T(1, "a")
res1: (Int, String) = (1,a)
However as others have mentioned, you probably should just create a case class.
Although as others have said, explicit (case) classes are best in the general sense.
However for localized scenarios what you can do is to use the tuple extractor to improve code readability:
val (first, second) = incrementPair(3, 4)
println(s"$first ... $second")
Given a method returning a tuple:
def incrementPair(pair: (Int, Int)) : (Int, Int) = {
val (first, second) = pair
(first + 1, second + 1)
}