Matlab plot half-wave rectifier - matlab

folks. For my college project, I need to plot a half-wave rectifier with the sum of two sine waves. Thus, I have chosen MATLAB to use as a tool, but I am having this problem (after the code):
l=[0:10^-6:1/1500];
sig=8*sin(2*pi*100000*l)+6*sin(2*pi*10000*l);
subplot(211)
plot(sig);
for t=1:667
if (8.*sin(2.*pi.*100000.*l)+6.*sin(2.*pi.*10000.*l))<=0
sig(t)=0;
else
sig(t) = 2.*sin((2.*pi.*100000*l + 2.*pi.*10000*l)/2).*cos(2.*pi.*100000*l - 2.*pi.*10000*l);
end
end
The problem showed on the command screen is: "In an assignment A(:) = B, the number of elements in A and B must be the same". How do I solve this issue?

To obtain the rectified signal there are several forms, but the simplest and most compact way is to use the matrices, in this case it is the following:
l=[0:10^-6:1/1500];
sig = 8*sin(2*pi*100000*l)+6*sin(2*pi*10000*l);
sig_rect = sig.*(sig >= 0);
subplot(211)
plot(sig)
subplot(212)
plot(sig_rect)
If you want to use loops you must do the following:
sig_rect = zeros(length(sig));
for t=1:sig
if sig(t) <=0
sig_rect(t) = 0;
else
sig_rect(t) = sig(t);
end
end

Related

Strange wrong result for (un)coupled PDEs using MATLAB's pdepe, time is doubled

I am trying to solve two coupled reaction diffusion equations in 1d, using pdpe, namely
$\partial_t u_1 = \nabla^2 u_1 + 2k(-u_1^2+u_2)$
$\partial_t u_2 = \nabla^2 u_1 + k(u_1^2-u_2)$
The solution is in the domain $x\in[0,1]$, with initial conditions being two identical Gaussian profiles centered at $x=1/2$. The boundary conditions are absorbing for both components, i.e. $u_1(0)=u_2(0)=u_1(1)=u_2(1)=0$.
Pdepe gives me a solution without prompting any errors. However, I think the solutions must be wrong, because when I set the coupling to zero, i.e. $k=0$ (and also if I set it to be very small, say $k=0.001$), the solutions do not coincide with the solution of the simple diffusion equation
$\partial_t u = \nabla^2 u$
as obtained from pdepe itself.
Strangely enough, the solutions $u_1(t)=u_2(t)$ from the "coupled" case with coupling set to zero, and the solution for the case uncoupled by construction $u(t')$ coincide if we set $t'=2t$, that is, the solution of the "coupled" case evolves twice as fast as the solution of the uncoupled case.
Here's a minimal working example:
Coupled case
function [xmesh,tspan,sol] = coupled(k) %argument is the coupling k
std=0.001; %width of initial gaussian
center=1/2; %center of gaussian
xmesh=linspace(0,1,10000);
tspan=linspace(0,1,1000);
sol = pdepe(0,#pdefun,#icfun,#bcfun,xmesh,tspan);
function [c,f,s] = pdefun(x,t,u,dudx)
c=ones(2,1);
f=zeros(2,1);
f(1) = dudx(1);
f(2) = dudx(2);
s=zeros(2,1);
s(1) = 2*k*(u(2)-u(1)^2);
s(2) = k*(u(1)^2-u(2));
end
function u0 = icfun(x)
u0=ones(2,1);
u0(1) = exp(-(x-center)^2/(2*std^2))/(sqrt(2*pi)*std);
u0(2) = exp(-(x-center)^2/(2*std^2))/(sqrt(2*pi)*std);
end
function [pL,qL,pR,qR] = bcfun(xL,uL,xR,uR,t)
pL=zeros(2,1);
pL(1) = uL(1);
pL(2) = uL(2);
pR=zeros(2,1);
pR(1) = uR(1);
pR(2) = uR(2);
qL = [0 0;0 0];
qR = [0 0;0 0];
end
end
Uncoupled case
function [xmesh,tspan,sol] = uncoupled()
std=0.001; %width of initial gaussian
center=1/2; %center of gaussian
xmesh=linspace(0,1,10000);
tspan=linspace(0,1,1000);
sol = pdepe(0,#pdefun,#icfun,#bcfun,xmesh,tspan);
function [c,f,s] = pdefun(x,t,u,dudx)
c=1;
f = dudx;
s=0;
end
function u0 = icfun(x)
u0=exp(-(x-center)^2/(2*std^2))/(sqrt(2*pi)*std);
end
function [pL,qL,pR,qR] = bcfun(xL,uL,xR,uR,t)
pL=uL;
pR=uR;
qL = 0;
qR = 0;
end
end
Now, suppose we run
[xmesh,tspan,soluncoupled] = uncoupled();
[xmesh,tspan,solcoupled] = coupled(0); %coupling k=0, i.e. uncoupled solutions
One can directly check by plotting the solutions for any time index $it$ that, even if they should be identical, the solutions given by each function are not identical, e.g.
hold all
plot(xmesh,soluncoupled(it+1,:),'b')
plot(xmesh,solcoupled(it+1,:,1),'r')
plot(xmesh,solcoupled(it+1,:,2),'g')
On the other hand, if we double the time of the uncoupled solution, the solutions are identical
hold all
plot(xmesh,soluncoupled(2*it+1,:),'b')
plot(xmesh,solcoupled(it+1,:,1),'r')
plot(xmesh,solcoupled(it+1,:,2),'g')
The case $k=0$ is not singular, one can set $k$ to be small but finite, and the deviations from the case $k=0$ are minimal, i.e. the solution still goes twice as fast as the uncoupled solution.
I really don't understand what is going on. I need to work on the coupled case, but obviously I don't trust the results if it does not give the right limit when $k\to 0$. I don't see where I could be making a mistake. Could it be a bug?
I found the source of the error. The problem lies in the qL and qR variables of bcfun for the coupled() function. The MATLAB documentation, see here and here, is slightly ambiguous on whether the q's should be matrices or column vectors. I had used matrices
qL = [0 0;0 0];
qR = [0 0;0 0];
but in reality I should have used column vectors
qL = [0;0];
qR = [0;0];
Amazingly, pdpe didn't throw an error, and simply gave wrong results. This should perhaps be fixed by the developers.

MATLAB: Piecewise function in curve fitting toolbox using fittype

Ignore the red fitted curve first. I'd like to get a curve to the blue datapoints. I know the first part (up to y~200 in this case) is linear, then a different curve (combination of two logarithmic curves but could also be approximated differently) and then it saturates at about 250 or 255. I tried it like this:
func = fittype('(x>=0 & x<=xTrans1).*(A*x+B)+(x>=xTrans1 & x<=xTrans2).*(C*x+D)+(x>=xTrans2).*E*255');
freg = fit(foundData(:,1), foundData(:,2), func);
plot(freg, foundData(:,1), foundData(:,2))
Okay obviously my fittype could be improved, but why is it actually THAT bad/wrong?
I tried another simpler model:
func = fittype('(x>=0 & x<=xTrans1).*(A*x+B)+(x>=xTrans1).*(C*x+D)')
freg = fit(foundData(:,1), foundData(:,2), func);
plot(freg, foundData(:,1), foundData(:,2))
At least I'd expect there two be two linear functions, and what I get is:
Or is it only the plot which is wrong because the output of the fit is:
General model:
f_fit(x) = (x>=0 & x<=xTrans1).*(A*x+B)+(x>=xTrans1).*(C*x+D)
Coefficients (with 95% confidence bounds):
A = 0.6491
B = 0.7317
C = 0.0007511
D = 143.5
xTrans1 = 0.547
Which at least yields a good xTrans1 (but I can't see it in the plot)!
EDIT
Thanks for pointing out the more clear way of programming the function to fit, I tried the following (three different linear functions with two transition points):
function y = singleRegression_ansatzfunktion(x,xtrans1,xtrans2,a,b,c,d,e,f)
y = zeros(size(x));
% 3 Geradengleichungen:
for i = 1:length(x)
if x(i) < xtrans1
y(i) = a + b.* x(i);
elseif(x(i) < xtrans2)
y(i) = c + d.* x(i);
else
y(i) = e + f.* x(i);
end
end
Calling the fitter like that:
freg = fit(foundData(:,1), foundData(:,2), 'singleRegression_ansatzfunktion(x,xtrans1,xtrans2,a,b,c,d,e,f)');
plot(freg, foundData(:,1), foundData(:,2))
Resulting in:
General model:
f(x) = singleRegression_ansatzfunktion(x,xtrans1,xtrans2,a,b,c,d,e,f)
Coefficients (with 95% confidence bounds):
a = 0.7655
b = 0.7952
c = 0.1869
d = 0.4898
e = 159.2
f = 0.0005512
xtrans1 = 0.7094
xtrans2 = 0.7547
!!!!Strange!!!!
EDIT2
When NOT letting MATLAB optimize the transition points but entering them myself like I shortly did in the cftool (should be the same like calling fit but was quicker to figure it out) via the custom equation:
(x>=0 & x<=2.9e4).*(A*x+B)+(x>2.9e4 & x<=1.3e5).*(B*x+D)+(x>1.3e5).*255
It worked pretty well. I don't know why MATLAB can't do this on his own but okay... There you go now as a result:
So at least I fixed it now but I still remain in doubt why MATLAB simply couldn't do this itself.
Have you tried the approach in the fittype documentation page ("Fit Curve Defined by a File" example) i.e. define your function to fit in a file to see if it makes a difference?
The other approach I can think of would be to split your data in two (or more) different datasets and do two separate fits for each chunk (but that assumes you know a priori where the transition point(s) is/are or can work it/them out before fitting).

how to write this script in matlab

I've just started learning Matlab(a few days ago) and I have the following homework that I just don't know how to code it:
Write a script that creates a graphic using the positions of the roots of the polynomial function: p(z)=z^n-1 in the complex plan for various values for n-natural number(nth roots of unity)
so I am assuming the function you are using is p(z) = (z^n) - 1 where n is some integer value.
you can the find the roots of this equation by simply plugging into the roots function. The array passed to roots are the coefficients of the input function.
Example
f = 5x^2-2x-6 -> Coefficients are [5,-2,-6]
To get roots enter roots([5,-2,-6]). This will find all points at which x will cause the function to be equal to 0.
so in your case you would enter funcRoots = roots([1,zeros(1,n-1),-1]);
You can then plot these values however you want, but a simple plot like plot(funcRoots) would likely suffice.
To do in a loop use the following. Mind you, if there are multiple roots that are the same, there may be some overlap so you may not be able to see certain values.
minN = 1;
maxN = 10;
nVals = minN:maxN;
figure; hold on;
colors = hsv(numel(nVals));
legendLabels = cell(1,numel(nVals));
iter = 1;
markers = {'x','o','s','+','d','^','v'};
for n = nVals
funcRoots = roots([1,zeros(1,n-1),-1]);
plot(real(funcRoots),imag(funcRoots),...
markers{mod(iter,numel(markers))+1},...
'Color',colors(iter,:),'MarkerSize',10,'LineWidth',2)
legendLabels{iter} = [num2str(n),'-order'];
iter = iter+1;
end
hold off;
xlabel('Real Value')
ylabel('Imaginary Value')
title('Unity Roots')
axis([-1,1,-1,1])
legend(legendLabels)

MATLAB travelling grids

I want to built a "travelling grid" MATLAB. Actually, I had to choose another MATLAB command instead of linspace to built my grid for any k. Is it possible with a MATLAB command?
for k=1:5
a=0;
b(k)=k.*3;
x=linspace(0,b(k),10);
y=linspace(0,30,10);
for z=1:length(x)
for t=1:length(y)
A(z,t,k)=x(z).*exp(-y(t));
end
end
end
Thanks for any help,
X = linspace(0,3,10);
XX(1,:,:) = bsxfun(#times,X,(1:5)')';
Y = exp(-linspace(0,30,10));
B = bsxfun(#times,Y',XX);
B = permute(B,[2,1,3]);
Your current code is working fine, so I'm not sure what the question is... Here is a slightly simpler implementation:
b = (1:5).*3;
A = zeros(10,10,5);
for k=1:5
[X,Y] = ndgrid(linspace(0,b(k),10), linspace(0,30,10));
A(:,:,k) = X.*exp(-Y);
end
If you also want the y-limits to change as well, the process is similar; you would have two loops and the result A being a 4D matrix

creating a train perceptron in MATLAB for gender clasiffication

I am coding a perceptron to learn to categorize gender in pictures of faces. I am very very new to MATLAB, so I need a lot of help. I have a few questions:
I am trying to code for a function:
function [y] = testset(x,w)
%y = sign(sigma(x*w-threshold))
where y is the predicted results, x is the training/testing set put in as a very large matrix, and w is weight on the equation. The part after the % is what I am trying to write, but I do not know how to write this in MATLAB code. Any ideas out there?
I am trying to code a second function:
function [err] = testerror(x,w,y)
%err = sigma(max(0,-w*x*y))
w, x, and y have the same values as stated above, and err is my function of error, which I am trying to minimize through the steps of the perceptron.
I am trying to create a step in my perceptron to lower the percent of error by using gradient descent on my original equation. Does anyone know how I can increment w using gradient descent in order to minimize the error function using an if then statement?
I can put up the code I have up till now if that would help you answer these questions.
Thank you!
edit--------------------------
OK, so I am still working on the code for this, and would like to put it up when I have something more complete. My biggest question right now is:
I have the following function:
function [y] = testset(x,w)
y = sign(sum(x*w-threshold))
Now I know that I am supposed to put a threshold in, but cannot figure out what I am supposed to put in as the threshold! any ideas out there?
edit----------------------------
this is what I have so far. Changes still need to be made to it, but I would appreciate input, especially regarding structure, and advice for making the changes that need to be made!
function [y] = Perceptron_Aviva(X,w)
y = sign(sum(X*w-1));
end
function [err] = testerror(X,w,y)
err = sum(max(0,-w*X*y));
end
%function [w] = perceptron(X,Y,w_init)
%w = w_init;
%end
%------------------------------
% input samples
X = X_train;
% output class [-1,+1];
Y = y_train;
% init weigth vector
w_init = zeros(size(X,1));
w = w_init;
%---------------------------------------------
loopcounter = 0
while abs(err) > 0.1 && loopcounter < 100
for j=1:size(X,1)
approx_y(j) = Perceptron_Aviva(X(j),w(j))
err = testerror(X(j),w(j),approx_y(j))
if err > 0 %wrong (structure is correct, test is wrong)
w(j) = w(j) - 0.1 %wrong
elseif err < 0 %wrong
w(j) = w(j) + 0.1 %wrong
end
% -----------
% if sign(w'*X(:,j)) ~= Y(j) %wrong decision?
% w = w + X(:,j) * Y(j); %then add (or subtract) this point to w
end
you can read this question I did some time ago.
I uses a matlab code and a function perceptron
function [w] = perceptron(X,Y,w_init)
w = w_init;
for iteration = 1 : 100 %<- in practice, use some stopping criterion!
for ii = 1 : size(X,2) %cycle through training set
if sign(w'*X(:,ii)) ~= Y(ii) %wrong decision?
w = w + X(:,ii) * Y(ii); %then add (or subtract) this point to w
end
end
sum(sign(w'*X)~=Y)/size(X,2) %show misclassification rate
end
and it is called from code (#Itamar Katz) like (random data):
% input samples
X1=[rand(1,100);rand(1,100);ones(1,100)]; % class '+1'
X2=[rand(1,100);1+rand(1,100);ones(1,100)]; % class '-1'
X=[X1,X2];
% output class [-1,+1];
Y=[-ones(1,100),ones(1,100)];
% init weigth vector
w=[.5 .5 .5]';
% call perceptron
wtag=perceptron(X,Y,w);
% predict
ytag=wtag'*X;
% plot prediction over origianl data
figure;hold on
plot(X1(1,:),X1(2,:),'b.')
plot(X2(1,:),X2(2,:),'r.')
plot(X(1,ytag<0),X(2,ytag<0),'bo')
plot(X(1,ytag>0),X(2,ytag>0),'ro')
legend('class -1','class +1','pred -1','pred +1')
I guess this can give you an idea to make the functions you described.
To the error compare the expected result with the real result (class)
Assume your dataset is X, the datapoins, and Y, the labels of the classes.
f=newp(X,Y)
creates a perceptron.
If you want to create an MLP then:
f=newff(X,Y,NN)
where NN is the network architecture, i.e. an array that designates the number of neurons at each hidden layer. For example
NN=[5 3 2]
will correspond to an network with 5 neurons at the first layers, 3 at the second and 2 a the third hidden layer.
Well what you call threshold is the Bias in machine learning nomenclature. This should be left as an input for the user because it is used during training.
Also, I wonder why you are not using the builtin matlab functions. i.e newp or newff. e.g.
ff=newp(X,Y)
Then you can set the properties of the object ff to do your job for selecting gradient descent and so on.