Is it possible to get the KVC-String from Swift 4 KeyPath? - swift

For a project I am currently working on, it would be very useful to get the KVC-String from a KeyPath instance my method is receiving. Short example:
struct Person {
var name: String
}
let propertyCache = ["name": "something"]
func method<T>(_ keypath: KeyPath<Person, T>) -> T? {
let kvcName = keypath.kvc
return propertyCache[kvcName]
}
This might seem not very useful, but in my project it is :) I found a property on KeyPath called _kvcKeyPathString which is also public, but it returns nil every time I tried.
Or is their maybe a possibility to use reflection there? Thanks in advance for ideas/solutions!

I don't know of a pure Swift way to get the name of the property as a string yet.
But, if you add the #objc attribute to the property then _kvcKeyPathString will actually have a value instead of always being nil. Also, since Swift structs can't be represented in Objective-C, this method only works for classes.
A minimal working example usage:
class SomeClass {
#objc var someProperty = 5
}
let keyPath = \SomeClass.someProperty
print(keyPath._kvcKeyPathString)

Related

I am getting return values from property. Is it possible?

class TestClass {
var testString: String = {
print("about to initialize the property")
return "TestString"
}()
}
let testClass = TestClass()
print("before first call")
print(testClass.testString)
print(testClass.testString)
In the above program, I am getting the return value from a property. Is it possible because I have heard we been doing it for methods.
func method() -> String {
return "a string"
}
This is what I know. Can anyone elaborate my doubt?
Yes it's possible and recommended since Swift 3. If you need to get just one value without passing other values to compute it, this is the recommended approach.
For example, in Swift 2 you had UIColor.redColor() returning a red color, but since Swift 3 you need to use UIColor.redColor
Yet it is possible. These are called Computed Properties, and are thoroughly explained in the Swift Documentation

Reference to self with Swift 4's KeyPath

Is there any way to reference self with Swift 4's new KeyPaths?
Something like this works fine, we can address a property of an object:
func report(array: [Any], keyPath: AnyKeyPath) {
print(array.map({ $0[keyPath: keyPath] }))
}
struct Wrapper {
let name: String
}
let wrappers = [Wrapper(name: "one"), Wrapper(name: "two")]
report(array: wrappers, keyPath: \Wrapper.name)
But addressing an object itself seems impossible to me:
let strings = ["string-one", "string-two"]
report(array: strings, keyPath: \String.self) // would not compile
I suppose there should be some obvious way for this?
EDIT:
Or simply:
let s = "text-value"
print(s[keyPath: \String.description]) // works fine
print(s[keyPath: \String.self]) // does not compile
Unfortunately, this isn't something Swift keypaths currently support. However, I do think this is something they should support (with the exact syntax you're attempting to use, e.g \String.self). All expressions have an implicit .self member that just evaluates to the expression, so it seems like a perfectly natural extension to allow .self in keypaths (Edit: This is now something that's being pitched).
Until supported (if at all), you can hack it with a protocol extension that adds a computed property that just forwards to self:
protocol KeyPathSelfProtocol {}
extension KeyPathSelfProtocol {
var keyPathSelf: Self {
get { return self }
set { self = newValue }
}
}
extension String : KeyPathSelfProtocol {}
let s = "text-value"
print(s[keyPath: \String.description])
print(s[keyPath: \String.keyPathSelf])
You just need to conform types that you want to use "self keypaths" with to KeyPathSelfProtocol.
Yes there is a way to reference self but it is not available in Swift 4. It was implemented for Swift 5 in september 2018 and it is called the Identity key path.
You use it like you suggested
let s = "text-value"
print(s[keyPath: \String.self]) // works in Swift 5.0
Even though Swift 5 is not yet released, you can already try it out by downloading a development version at: https://swift.org/download/#releases
The behavior of keyPath is the same as similar to Key-Value Coding: Getting the value of a member of the class / struct by key subscription.
In Swift self is not a member of the class, description is.
What result would you expect with
report(array: wrappers, keyPath: \Wrapper.self)

The strange behaviour of Swift's AnyObject

In messing around with Swift today I came across a strange thing. Here's the unit test I developed which shows some unexpected behaviours when using Swift's AnyObject.
class SwiftLanguageTests: XCTestCase {
class TestClass {
var name:String?
var xyz:String?
}
func testAccessingPropertiesOfAnyObjectInstancesReturnsNils() {
let instance = TestClass()
instance.xyz = "xyz"
instance.name = "name"
let typeAnyObject = instance as AnyObject
// Correct: Won't compile because 'xyz' is an unknown property in any class.
XCTAssertEqual("xyz", typeAnyObject.xyz)
// Unexpected: Will compile because 'name' is a property of NSException
// Strange: But returns a nil when accessed.
XCTAssertEqual("name", typeAnyObject.name)
}
}
This code is a simplification of some other code where there is a Swift function that can only return a AnyObject.
As expected, after creating an instance of TestClass, casting it to AnyObject and setting another variable, accessing the property xyz won't compile because AnyObject does not have such a property.
But surprisingly a property called name is accepted by the compiler because there is a property by that name on NSException. It appears that Swift is quite happy to accept any property name as long as it exists somewhere in the runtime.
The next unexpected behaviour and the thing that got all this started is that attempting to access the name property returns a nil. Watching the various variables in the debugger, I can see that typeAnyObject is pointing at the original TestClass instance and it's name property has a value of "name".
Swift doesn't throw an error when accessing typeAnyObject.name so I would expect it to find and return "name". But instead I get nil.
I would be interested if anyone can shed some light on what is going on here?
My main concern is that I would expect Swift to either throw an error when accessing a property that does not exist on AnyObject, or find and return the correct value. Currently neither is happening.
Similar as in Objective-C, where you can send arbitrary messages to id,
arbitrary properties and methods can be called on an instance of AnyObject
in Swift. The details are different however, and it is documented in
Interacting with Objective-C APIs
in the "Using Swift with Cocoa and Objective-C" book.
Swift includes an AnyObject type that represents some kind of object. This is similar to Objective-Cā€™s id type. Swift imports id as AnyObject, which allows you to write type-safe Swift code while maintaining the flexibility of an untyped object.
...
You can call any Objective-C method and access any property on an AnyObject value without casting to a more specific class type. This includes Objective-C compatible methods and properties marked with the #objc attribute.
...
When you call a method on a value of AnyObject type, that method call behaves like an implicitly unwrapped optional. You can use the same optional chaining syntax you would use for optional methods in protocols to optionally invoke a method on AnyObject.
Here is an example:
func tryToGetTimeInterval(obj : AnyObject) {
let ti = obj.timeIntervalSinceReferenceDate // NSTimeInterval!
if let theTi = ti {
print(theTi)
} else {
print("does not respond to `timeIntervalSinceReferenceDate`")
}
}
tryToGetTimeInterval(NSDate(timeIntervalSinceReferenceDate: 1234))
// 1234.0
tryToGetTimeInterval(NSString(string: "abc"))
// does not respond to `timeIntervalSinceReferenceDate`
obj.timeIntervalSinceReferenceDate is an implicitly unwrapped optional
and nil if the object does not have that property.
Here an example for checking and calling a method:
func tryToGetFirstCharacter(obj : AnyObject) {
let fc = obj.characterAtIndex // ((Int) -> unichar)!
if let theFc = fc {
print(theFc(0))
} else {
print("does not respond to `characterAtIndex`")
}
}
tryToGetFirstCharacter(NSDate(timeIntervalSinceReferenceDate: 1234))
// does not respond to `characterAtIndex`
tryToGetFirstCharacter(NSString(string: "abc"))
// 97
obj.characterAtIndex is an implicitly unwrapped optional closure. That code
can be simplified using optional chaining:
func tryToGetFirstCharacter(obj : AnyObject) {
if let c = obj.characterAtIndex?(0) {
print(c)
} else {
print("does not respond to `characterAtIndex`")
}
}
In your case, TestClass does not have any #objc properties.
let xyz = typeAnyObject.xyz // error: value of type 'AnyObject' has no member 'xyz'
does not compile because the xyz property is unknown to the compiler.
let name = typeAnyObject.name // String!
does compile because ā€“ as you noticed ā€“ NSException has a name property.
The value however is nil because TestClass does not have an
Objective-C compatible name method. As above, you should use optional
binding to safely unwrap the value (or test against nil).
If your class is derived from NSObject
class TestClass : NSObject {
var name : String?
var xyz : String?
}
then
let xyz = typeAnyObject.xyz // String?!
does compile. (Alternatively, mark the class or the properties with #objc.)
But now
let name = typeAnyObject.name // error: Ambigous use of `name`
does not compile anymore. The reason is that both TestClass and NSException
have a name property, but with different types (String? vs String),
so the type of that expression is ambiguous. This ambiguity can only be
resolved by (optionally) casting the AnyObject back to TestClass:
if let name = (typeAnyObject as? TestClass)?.name {
print(name)
}
Conclusion:
You can call any method/property on an instance of AnyObject if that
method/property is Objective-C compatible.
You have to test the implicitly unwrapped optional against nil or
use optional binding to check that the instance actually has that
method/property.
Ambiguities arise if more than one class has (Objective-C) compatible
methods with the same name but different types.
In particular because of the last point, I would try to avoid this
mechanism if possible, and optionally cast to a known class instead
(as in the last example).
it has nothing with NSException!
from Apple documentation:
protocol AnyObject { ... }
The protocol to which all classes implicitly conform.
When used as a concrete type, all known #objc methods and properties are available, as implicitly-unwrapped-optional methods and properties respectively, on each instance of AnyObject
name is #objc property, xyz is not.
try this :-)
let typeAnyObject = instance as Any
or
#objc class TestClass: NSObject {
var name:String?
var xyz:String? }
let instance = TestClass() instance.xyz = "xyz" instance.name = "name"
let typeAnyObject = instance as AnyObject
typeAnyObject.name // will not compile now

Swift class without initializer working?

Could you please tell me why that code (class) is working in playground?
If I understand properly there should be init or something that can be used by "blank initializer"?
class Shape{
var numberOfSides = 0
func simpleDescription() -> String {
return "A shape with \(numberOfSides) sides."
}
}
var shapeA = Shape()
shapeA.simpleDescription()
shapeA.numberOfSides = 7
var shapeDescription = shapeA.simpleDescription()
shapeA.simpleDescription()
Thank you for your help
If all the stored properties are given default values, as here, the class does not need to have an explicit initializer.
In Swift an init override is only required in certain cases.
For instance, if you hadn't put a default value on that numberOfSides var then you would have to have an init to provide the default value.
Or you would have had to make it optional which gives it a nil default value.
This is all explained in the iBook by apple.

NSUserDefaults in Swift - implementing type safety

One of the things that bugs me about Swift and Cocoa together is working with NSUserDefaults, because there is no type information and it is always necessary to cast the result of objectForKey to what you are expecting to get. It is unsafe and impractical. I decided to tackle this problem, making NSUserDefaults more practical in Swift-land, and hopefully learning something along the way. Here were my goals in the beginning:
Complete type safety: each key has one type associated with it. When setting a value, only a value of that type should be accepted and when getting a value the result should come out with the correct type
Global list of keys which are clear in meaning and content. The list should be easy to create, modify and extend
Clean syntax, using subscripts if possible. For example, this would
be perfect:
3.1. set: UserDefaults[.MyKey] = value
3.2. get: let value = UserDefaults[.MyKey]
Support for classes that conform to the NSCoding protocol by
automatically [un]archiving them
Support for all property list types accepted by NSUserDefaults
I started by creating this generic struct:
struct UDKey <T> {
init(_ n: String) { name = n }
let name: String
}
Then I created this other struct that serves as a container for all the keys in an application:
struct UDKeys {}
This can then be extended to add keys wherever needed:
extension UDKeys {
static let MyKey1 = UDKey<Int>("MyKey1")
static let MyKey2 = UDKey<[String]>("MyKey2")
}
Note how each key has a type associated with it. It represents the type of the information to be saved. Also, the name property is the string that is to be used as a key for NSUserDefaults.
The keys can be listed all in one constants file, or added using extensions on a per-file basis close to where they are being used for storing data.
Then I created an "UserDefaults" class responsible for handling the getting/setting of information:
class UserDefaultsClass {
let storage = NSUserDefaults.standardUserDefaults()
init(storage: NSUserDefaults) { self.storage = storage }
init() {}
// ...
}
let UserDefaults = UserDefaultsClass() // or UserDefaultsClass(storage: ...) for further customisation
The idea is that one instance for a particular domain is created and then every method is accessed in this way:
let value = UserDefaults.myMethod(...)
I prefer this approach to things like UserDefaults.sharedInstance.myMethod(...) (too long!) or using class methods for everything. Also, this allows interacting with various domains at the same time by using more than one UserDefaultsClass with different storage values.
So far, items 1 and 2 have been taken care of, but now the difficult part is starting: how to actually design the methods on UserDefaultsClass in order to comply with the rest.
For example, let's start with item 4. First I tried this (this code is inside UserDefaultsClass):
subscript<T: NSCoding>(key: UDKey<T>) -> T? {
set { storage.setObject(NSKeyedArchiver.archivedDataWithRootObject(newValue), forKey: key.name) }
get {
if let data = storage.objectForKey(key.name) as? NSData {
return NSKeyedUnarchiver.unarchiveObjectWithData(data) as? T
} else { return nil }
}
}
But then I find out that Swift doesn't allow generic subscripts!! Alright, then I guess I'll have to use functions then. There goes half of item 3...
func set <T: NSCoding>(key: UDKey<T>, _ value: T) {
storage.setObject(NSKeyedArchiver.archivedDataWithRootObject(value), forKey: key.name)
}
func get <T: NSCoding>(key: UDKey<T>) -> T? {
if let data = storage.objectForKey(key.name) as? NSData {
return NSKeyedUnarchiver.unarchiveObjectWithData(data) as? T
} else { return nil }
}
And that works just fine:
extension UDKeys { static let MyKey = UDKey<NSNotification>("MyKey") }
UserDefaults.set(UDKeys.MyKey, NSNotification(name: "Hello!", object: nil))
let n = UserDefaults.get(UDKeys.MyKey)
Note how I can't call UserDefaults.get(.MyKey). I have to use UDKeys.MyKey. And I can't do that because it's not yet possible to have static variables on a generic struct!!
Next, let's try number 5. Now that has been an headache and that's where I need lots of help.
Property list types are, as per the docs:
A default object must be a property list, that is, an instance of (or
for collections a combination of instances of): NSData, NSString,
NSNumber, NSDate, NSArray, or NSDictionary.
That in Swift means Int, [Int], [[String:Bool]], [[String:[Double]]], etc are all property list types. At first I thought that I could just write this and trust whoever is using this code to remember that only plist types are allowed:
func set <T: AnyObject>(key: UDKey<T>, _ value: T) {
storage.setObject(value, forKey: key.name)
}
func get <T: AnyObject>(key: UDKey<T>) -> T? {
return storage.objectForKey(key.name) as? T
}
But as you'll notice, while this works fine:
extension UDKeys { static let MyKey = UDKey<NSData>("MyKey") }
UserDefaults.set(UDKeys.MyKey, NSData())
let d = UserDefaults.get(UDKeys.MyKey)
This doesn't:
extension UDKeys { static let MyKey = UDKey<[NSData]>("MyKey") }
UserDefaults.set(UDKeys.MyKey, [NSData()])
And this doesn't either:
extension UDKeys { static let MyKey = UDKey<[Int]>("MyKey") }
UserDefaults.set(UDKeys.MyKey, [0])
Not even this:
extension UDKeys { static let MyKey = UDKey<Int>("MyKey") }
UserDefaults.set(UDKeys.MyKey, 1)
The problem is that they are all valid property list types yet Swift obviously interprets arrays and ints as structs, not as their Objective-C class counterparts. However:
func set <T: Any>(key: UDKey<T>, _ value: T)
won't work either, because then any value type, not just the ones that have a class cousin courtesy of Obj-C, is accepted, and storage.setObject(value, forKey: key.name) is no longer valid because value has to be a reference type.
If a protocol existed in Swift that accepted any reference type and any value type that can be converted to a reference type in objective-c (like [Int] and the other examples I mention) this problem would be solved:
func set <T: AnyObjectiveCObject>(key: UDKey<T>, _ value: T) {
storage.setObject(value, forKey: key.name)
}
func get <T: AnyObjectiveCObject>(key: UDKey<T>) -> T? {
return storage.objectForKey(key.name) as? T
}
AnyObjectiveCObject would accept any swift classes and swift arrays, dictionaries, numbers (ints, floats, bools, etc that convert to NSNumber), strings...
Unfortunately, AFAIK this doesn't exist.
Question:
How can I have write a generic function (or collection of overloaded generic functions) whose generic type T can be any reference type or any value type that Swift can convert to a reference type in Objective-C?
Solved: With the help of the answers I got, I arrived at what I wanted. In case anyone wants to take a look at my solution, here it is.
I don't mean to brag but ... oh who am I kidding, I totally do!
Preferences.set([NSData()], forKey: "MyKey1")
Preferences.get("MyKey1", type: type([NSData]))
Preferences.get("MyKey1") as [NSData]?
func crunch1(value: [NSData])
{
println("Om nom 1!")
}
crunch1(Preferences.get("MyKey1")!)
Preferences.set(NSArray(object: NSData()), forKey: "MyKey2")
Preferences.get("MyKey2", type: type(NSArray))
Preferences.get("MyKey2") as NSArray?
func crunch2(value: NSArray)
{
println("Om nom 2!")
}
crunch2(Preferences.get("MyKey2")!)
Preferences.set([[String:[Int]]](), forKey: "MyKey3")
Preferences.get("MyKey3", type: type([[String:[Int]]]))
Preferences.get("MyKey3") as [[String:[Int]]]?
func crunch3(value: [[String:[Int]]])
{
println("Om nom 3!")
}
crunch3(Preferences.get("MyKey3")!)
I'd like to introduce my idea. (Sorry for my poor English in advance.)
let plainKey = UDKey("Message", string)
let mixedKey
= UDKey("Mixed"
, array(dictionary(
string, tuple(
array(integer),
optional(date)))))
let ud = UserDefaults(NSUserDefaults.standardUserDefaults())
ud.set(plainKey, "Hello")
ud.set(plainKey, 2525) // <-- compile error
ud.set(mixedKey, [ [ "(^_^;)": ([1, 2, 3], .Some(NSDate()))] ])
ud.set(mixedKey, [ [ "(^_^;)": ([1, 2, 3], .Some(NSData()))] ]) // <-- compile error
The only difference is that UDKey() now requires #2 argument, a value of BiMap class. I've uncoupled the work originally of UDKey into BiMap which converts a value of a type to/from a value of another type.
public class BiMap<A, B> {
public func AtoB(a: A) -> B?
public func BtoA(b: B) -> A?
}
Consequently, types that set/get can accepts are conducted by BiMap, and no longer limited to types as can automatically cast
from/to AnyObject (more specifically, types NSUserDefaults can accepts.).
Because BiMap is a generic class, you can easily create subtypes of that, interchanging arbitrary two types you want.
Here is full source code. (But there are bugs yet to be fixed..)
https://gist.github.com/hisui/47f170a9e193168dc946