I am importing a CSV file (using spark-csv) into a DataFrame which has empty String values. When applied the OneHotEncoder, the application crashes with error requirement failed: Cannot have an empty string for name.. Is there a way I can get around this?
I could reproduce the error in the example provided on Spark ml page:
val df = sqlContext.createDataFrame(Seq(
(0, "a"),
(1, "b"),
(2, "c"),
(3, ""), //<- original example has "a" here
(4, "a"),
(5, "c")
)).toDF("id", "category")
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("categoryIndex")
.fit(df)
val indexed = indexer.transform(df)
val encoder = new OneHotEncoder()
.setInputCol("categoryIndex")
.setOutputCol("categoryVec")
val encoded = encoder.transform(indexed)
encoded.show()
It is annoying since missing/empty values is a highly generic case.
Thanks in advance,
Nikhil
Since the OneHotEncoder/OneHotEncoderEstimator does not accept empty string for name, or you'll get the following error :
java.lang.IllegalArgumentException: requirement failed: Cannot have an empty string for name.
at scala.Predef$.require(Predef.scala:233)
at org.apache.spark.ml.attribute.Attribute$$anonfun$5.apply(attributes.scala:33)
at org.apache.spark.ml.attribute.Attribute$$anonfun$5.apply(attributes.scala:32)
[...]
This is how I will do it : (There is other way to do it, rf. #Anthony 's answer)
I'll create an UDF to process the empty category :
import org.apache.spark.sql.functions._
def processMissingCategory = udf[String, String] { s => if (s == "") "NA" else s }
Then, I'll apply the UDF on the column :
val df = sqlContext.createDataFrame(Seq(
(0, "a"),
(1, "b"),
(2, "c"),
(3, ""), //<- original example has "a" here
(4, "a"),
(5, "c")
)).toDF("id", "category")
.withColumn("category",processMissingCategory('category))
df.show
// +---+--------+
// | id|category|
// +---+--------+
// | 0| a|
// | 1| b|
// | 2| c|
// | 3| NA|
// | 4| a|
// | 5| c|
// +---+--------+
Now, you can go back to your transformations
val indexer = new StringIndexer().setInputCol("category").setOutputCol("categoryIndex").fit(df)
val indexed = indexer.transform(df)
indexed.show
// +---+--------+-------------+
// | id|category|categoryIndex|
// +---+--------+-------------+
// | 0| a| 0.0|
// | 1| b| 2.0|
// | 2| c| 1.0|
// | 3| NA| 3.0|
// | 4| a| 0.0|
// | 5| c| 1.0|
// +---+--------+-------------+
// Spark <2.3
// val encoder = new OneHotEncoder().setInputCol("categoryIndex").setOutputCol("categoryVec")
// Spark +2.3
val encoder = new OneHotEncoderEstimator().setInputCols(Array("categoryIndex")).setOutputCols(Array("category2Vec"))
val encoded = encoder.transform(indexed)
encoded.show
// +---+--------+-------------+-------------+
// | id|category|categoryIndex| categoryVec|
// +---+--------+-------------+-------------+
// | 0| a| 0.0|(3,[0],[1.0])|
// | 1| b| 2.0|(3,[2],[1.0])|
// | 2| c| 1.0|(3,[1],[1.0])|
// | 3| NA| 3.0| (3,[],[])|
// | 4| a| 0.0|(3,[0],[1.0])|
// | 5| c| 1.0|(3,[1],[1.0])|
// +---+--------+-------------+-------------+
EDIT:
#Anthony 's solution in Scala :
df.na.replace("category", Map( "" -> "NA")).show
// +---+--------+
// | id|category|
// +---+--------+
// | 0| a|
// | 1| b|
// | 2| c|
// | 3| NA|
// | 4| a|
// | 5| c|
// +---+--------+
I hope this helps!
Yep, it's a little thorny but maybe you can just replace the empty string with something sure to be different than other values. NOTE that I am using pyspark DataFrameNaFunctions API but Scala's should be similar.
df = sqlContext.createDataFrame([(0,"a"), (1,'b'), (2, 'c'), (3,''), (4,'a'), (5, 'c')], ['id', 'category'])
df = df.na.replace('', 'EMPTY', 'category')
df.show()
+---+--------+
| id|category|
+---+--------+
| 0| a|
| 1| b|
| 2| c|
| 3| EMPTY|
| 4| a|
| 5| c|
+---+--------+
if the column contains null the OneHotEncoder fails with a NullPointerException.
therefore i extended the udf to tanslate null values as well
object OneHotEncoderExample {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("OneHotEncoderExample Application").setMaster("local[2]")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
// $example on$
val df1 = sqlContext.createDataFrame(Seq(
(0.0, "a"),
(1.0, "b"),
(2.0, "c"),
(3.0, ""),
(4.0, null),
(5.0, "c")
)).toDF("id", "category")
import org.apache.spark.sql.functions.udf
def emptyValueSubstitution = udf[String, String] {
case "" => "NA"
case null => "null"
case value => value
}
val df = df1.withColumn("category", emptyValueSubstitution( df1("category")) )
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("categoryIndex")
.fit(df)
val indexed = indexer.transform(df)
indexed.show()
val encoder = new OneHotEncoder()
.setInputCol("categoryIndex")
.setOutputCol("categoryVec")
.setDropLast(false)
val encoded = encoder.transform(indexed)
encoded.show()
// $example off$
sc.stop()
}
}
Related
I have the following dataframe of two columns of string type A and B:
val df = (
spark
.createDataFrame(
Seq(
("a1", "b1"),
("a1", "b2"),
("a1", "b2"),
("a2", "b3")
)
)
).toDF("A", "B")
I create maps between distinct elements of each columns and a set of integers
val mapColA = (
df
.select("A")
.distinct
.rdd
.zipWithIndex
.collectAsMap
)
val mapColB = (
df
.select("B")
.distinct
.rdd
.zipWithIndex
.collectAsMap
)
Now I want to create a new columns in the dataframe applying those maps to their correspondent columns. For one map only this would be
df.select("A").map(x=>mapColA.get(x)).show()
However I don't understand how to apply each map to their correspondent columns and create two new columns (e.g. with withColumn). The expected result would be
val result = (
spark
.createDataFrame(
Seq(
("a1", "b1", 1, 1),
("a1", "b2", 1, 2),
("a1", "b2", 1, 2),
("a2", "b3", 2, 3)
)
)
).toDF("A", "B", "idA", "idB")
Could you help me?
If I understood correctly, this can be achieved using dense_rank:
import org.apache.spark.sql.expressions.Window
val df2 = df.withColumn("idA", dense_rank().over(Window.orderBy("A")))
.withColumn("idB", dense_rank().over(Window.orderBy("B")))
df2.show
+---+---+---+---+
| A| B|idA|idB|
+---+---+---+---+
| a1| b1| 1| 1|
| a1| b2| 1| 2|
| a1| b2| 1| 2|
| a2| b3| 2| 3|
+---+---+---+---+
If you want to stick with your original code, you can make some modifications:
val mapColA = df.select("A").distinct().rdd.map(r=>r.getAs[String](0)).zipWithIndex.collectAsMap
val mapColB = df.select("B").distinct().rdd.map(r=>r.getAs[String](0)).zipWithIndex.collectAsMap
val df2 = df.map(r => (r.getAs[String](0), r.getAs[String](1), mapColA.get(r.getAs[String](0)), mapColB.get(r.getAs[String](1)))).toDF("A","B", "idA", "idB")
df2.show
+---+---+---+---+
| A| B|idA|idB|
+---+---+---+---+
| a1| b1| 1| 2|
| a1| b2| 1| 0|
| a1| b2| 1| 0|
| a2| b3| 0| 1|
+---+---+---+---+
Given the code below, how would I go about adding a count column? (e.g. .count("*").as("count"))
Final output to look like something like this:
+---+------+------+-----------------------------+------
| id|sum(d)|max(b)|concat_ws(,, collect_list(s))|count|
+---+------+------+-----------------------------+------
| 1| 1.0| true| a. | 1 |
| 2| 4.0| true| b,b| 2 |
| 3| 3.0| true| c. | 1 |
Current code is below:
val df =Seq(
(1, 1.0, true, "a"),
(2, 2.0, false, "b")
(3, 3.0, false, "b")
(2, 2.0, false, "c")
).toDF("id","d","b","s")
val dataTypes: Map[String, DataType] = df.schema.map(sf => (sf.name,sf.dataType)).toMap
def genericAgg(c:String) = {
dataTypes(c) match {
case DoubleType => sum(col(c))
case StringType => concat_ws(",",collect_list(col(c))) // "append"
case BooleanType => max(col(c))
}
}
val aggExprs: Seq[Column] = df.columns.filterNot(_=="id")
.map(c => genericAgg(c))
df
.groupBy("id")
.agg(aggExprs.head,aggExprs.tail:_*)
.show()
You can simply append count("*").as("count") to aggExprs.tail in your agg, as shown below:
df.
groupBy("id").agg(aggExprs.head, aggExprs.tail :+ count("*").as("count"): _*).
show
// +---+------+------+-----------------------------+-----+
// | id|sum(d)|max(b)|concat_ws(,, collect_list(s))|count|
// +---+------+------+-----------------------------+-----+
// | 1| 1.0| true| a| 1|
// | 3| 3.0| false| b| 1|
// | 2| 4.0| false| b,c| 2|
// +---+------+------+-----------------------------+-----+
I want to find the time difference of 2 cells.
With arrays in python I would do a for loop the st[i+1] - st[i] and store the results somewhere.
I have this dataframe sorted by time. How can I do it with Spark 2 or Scala, a pseudo-code is enough.
+--------------------+-------+
| st| name|
+--------------------+-------+
|15:30 |dog |
|15:32 |dog |
|18:33 |dog |
|18:34 |dog |
+--------------------+-------+
If the sliding diffs are to be computed per partition by name, I would use the lag() Window function:
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
val df = Seq(
("a", 100), ("a", 120),
("b", 200), ("b", 240), ("b", 270)
).toDF("name", "value")
val window = Window.partitionBy($"name").orderBy("value")
df.
withColumn("diff", $"value" - lag($"value", 1).over(window)).
na.fill(0).
orderBy("name", "value").
show
// +----+-----+----+
// |name|value|diff|
// +----+-----+----+
// | a| 100| 0|
// | a| 120| 20|
// | b| 200| 0|
// | b| 240| 40|
// | b| 270| 30|
// +----+-----+----+
On the other hand, if the sliding diffs are to be computed across the entire dataset, Window function without partition wouldn't scale hence I would resort to using RDD's sliding() function:
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
import org.apache.spark.mllib.rdd.RDDFunctions._
val rdd = df.rdd
val diffRDD = rdd.sliding(2).
map{ case Array(x, y) => Row(y.getString(0), y.getInt(1), y.getInt(1) - x.getInt(1)) }
val headRDD = sc.parallelize(Seq(Row.fromSeq(rdd.first.toSeq :+ 0)))
val headDF = spark.createDataFrame(headRDD, df.schema.add("diff", IntegerType))
val diffDF = spark.createDataFrame(diffRDD, df.schema.add("diff", IntegerType))
val resultDF = headDF union diffDF
resultDF.show
// +----+-----+----+
// |name|value|diff|
// +----+-----+----+
// | a| 100| 0|
// | a| 120| 20|
// | b| 200| 80|
// | b| 240| 40|
// | b| 270| 30|
// +----+-----+----+
Something like:
object Data1 {
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("akka").setLevel(Level.OFF)
def main(args: Array[String]) : Unit = {
implicit val spark: SparkSession =
SparkSession
.builder()
.appName("Test")
.master("local[1]")
.getOrCreate()
import org.apache.spark.sql.functions.col
val rows = Seq(Row(1, 1), Row(1, 1), Row(1, 1))
val schema = List(StructField("int1", IntegerType, true), StructField("int2", IntegerType, true))
val someDF = spark.createDataFrame(
spark.sparkContext.parallelize(rows),
StructType(schema)
)
someDF.withColumn("diff", col("int1") - col("int2")).show()
}
}
gives
+----+----+----+
|int1|int2|diff|
+----+----+----+
| 1| 1| 0|
| 1| 1| 0|
| 1| 1| 0|
+----+----+----+
If you are specifically looking to diff adjacent elements in a collection then in Scala I would zip the collection with its tail to give a collection containing tuples of adjacent pairs.
Unfortunately there isn't a tail method on RDDs or DataFrames/Sets
You could do something like:
val a = myDF.rdd
val tail = myDF.rdd.zipWithIndex.collect{
case (index, v) if index > 1 => v}
a.zip(tail).map{ case (l, r) => /* diff l and r st column */}.collect
I'm looking a solution to build an aggregation with all combination of a column. For example , I have for a data frame as below:
val df = Seq(("A", 1), ("B", 2), ("C", 3), ("A", 4), ("B", 5)).toDF("id", "value")
+---+-----+
| id|value|
+---+-----+
| A| 1|
| B| 2|
| C| 3|
| A| 4|
| B| 5|
+---+-----+
And looking an aggregation for all combination over the column "id". Here below I found a solution, but this cannot use the parallelism of Spark, works only on driver node or only on a single executor. Is there any better solution in order to get rid of the for loop?
import spark.implicits._;
val list =df.select($"id").distinct().orderBy($"id").as[String].collect();
val combinations = (1 to list.length flatMap (x => list.combinations(x))) filter(_.length >1)
val schema = StructType(
StructField("indexvalue", IntegerType, true) ::
StructField("segment", StringType, true) :: Nil)
var initialDF = spark.createDataFrame(sc.emptyRDD[Row], schema)
for (x <- combinations) {
initialDF = initialDF.union(df.filter($"id".isin(x: _*))
.agg(expr("sum(value)").as("indexvalue"))
.withColumn("segment",lit(x.mkString("+"))))
}
initialDF.show()
+----------+-------+
|indexvalue|segment|
+----------+-------+
| 12| A+B|
| 8| A+C|
| 10| B+C|
| 15| A+B+C|
+----------+-------+
I have three columns in df
Col1,col2,col3
X,x1,x2
Z,z1,z2
Y,
X,x3,x4
P,p1,p2
Q,q1,q2
Y
I want to do the following
when col1=x,store the value of col2 and col3
and assign those column values to next row when col1=y
expected output
X,x1,x2
Z,z1,z2
Y,x1,x2
X,x3,x4
P,p1,p2
Q,q1,q2
Y,x3,x4
Any help would be appreciated
Note:-spark 1.6
Here's one approach using Window function with steps as follows:
Add row-identifying column (not needed if there is already one) and combine non-key columns (presumably many of them) into one
Create tmp1 with conditional nulls and tmp2 using last/rowsBetween Window function to back-fill with the last non-null value
Create newcols conditionally from cols and tmp2
Expand newcols back to individual columns using foldLeft
Note that this solution uses Window function without partitioning, thus may not work for large dataset.
val df = Seq(
("X", "x1", "x2"),
("Z", "z1", "z2"),
("Y", "", ""),
("X", "x3", "x4"),
("P", "p1", "p2"),
("Q", "q1", "q2"),
("Y", "", "")
).toDF("col1", "col2", "col3")
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
val colList = df.columns.filter(_ != "col1")
val df2 = df.select($"col1", monotonically_increasing_id.as("id"),
struct(colList.map(col): _*).as("cols")
)
val df3 = df2.
withColumn( "tmp1", when($"col1" === "X", $"cols") ).
withColumn( "tmp2", last("tmp1", ignoreNulls = true).over(
Window.orderBy("id").rowsBetween(Window.unboundedPreceding, 0)
) )
df3.show
// +----+---+-------+-------+-------+
// |col1| id| cols| tmp1| tmp2|
// +----+---+-------+-------+-------+
// | X| 0|[x1,x2]|[x1,x2]|[x1,x2]|
// | Z| 1|[z1,z2]| null|[x1,x2]|
// | Y| 2| [,]| null|[x1,x2]|
// | X| 3|[x3,x4]|[x3,x4]|[x3,x4]|
// | P| 4|[p1,p2]| null|[x3,x4]|
// | Q| 5|[q1,q2]| null|[x3,x4]|
// | Y| 6| [,]| null|[x3,x4]|
// +----+---+-------+-------+-------+
val df4 = df3.withColumn( "newcols",
when($"col1" === "Y", $"tmp2").otherwise($"cols")
).select($"col1", $"newcols")
df4.show
// +----+-------+
// |col1|newcols|
// +----+-------+
// | X|[x1,x2]|
// | Z|[z1,z2]|
// | Y|[x1,x2]|
// | X|[x3,x4]|
// | P|[p1,p2]|
// | Q|[q1,q2]|
// | Y|[x3,x4]|
// +----+-------+
val dfResult = colList.foldLeft( df4 )(
(accDF, c) => accDF.withColumn(c, df4(s"newcols.$c"))
).drop($"newcols")
dfResult.show
// +----+----+----+
// |col1|col2|col3|
// +----+----+----+
// | X| x1| x2|
// | Z| z1| z2|
// | Y| x1| x2|
// | X| x3| x4|
// | P| p1| p2|
// | Q| q1| q2|
// | Y| x3| x4|
// +----+----+----+
[UPDATE]
For Spark 1.x, last(colName, ignoreNulls) isn't available in the DataFrame API. A work-around is to revert to use Spark SQL which supports ignore-null in its last() method:
df2.
withColumn( "tmp1", when($"col1" === "X", $"cols") ).
createOrReplaceTempView("df2table")
// might need to use registerTempTable("df2table") instead
val df3 = spark.sqlContext.sql("""
select col1, id, cols, tmp1, last(tmp1, true) over (
order by id rows between unbounded preceding and current row
) as tmp2
from df2table
""")
Yes, there is a lag function that requires ordering
import org.apache.spark.sql.expressions.Window.orderBy
import org.apache.spark.sql.functions.{coalesce, lag}
case class Temp(a: String, b: Option[String], c: Option[String])
val input = ss.createDataFrame(
Seq(
Temp("A", Some("a1"), Some("a2")),
Temp("D", Some("d1"), Some("d2")),
Temp("B", Some("b1"), Some("b2")),
Temp("E", None, None),
Temp("C", None, None)
))
+---+----+----+
| a| b| c|
+---+----+----+
| A| a1| a2|
| D| d1| d2|
| B| b1| b2|
| E|null|null|
| C|null|null|
+---+----+----+
val order = orderBy($"a")
input
.withColumn("b", coalesce($"b", lag($"b", 1).over(order)))
.withColumn("c", coalesce($"c", lag($"c", 1).over(order)))
.show()
+---+---+---+
| a| b| c|
+---+---+---+
| A| a1| a2|
| B| b1| b2|
| C| b1| b2|
| D| d1| d2|
| E| d1| d2|
+---+---+---+