Is Email is a char by char datatransfer? - email

I have a confusion about char by char data transfer vs block by block data transfer. Is email is char by char data transfer ? If email transfer is a char by char transfer,is it Asynchronous transmission ?

There might be some context that's missing from your question, but there are many levels to look at.
The "send email" behavior from libraries will submit the email as an array/block of characters. At some point that will probably be converted to a stream, which can be seen as a char-by-char transfer. But when it gets down to the TCP/IP layer, the information is broken into packets with a max size. But below that layer, the packets are sent one bit at a time.
I hope that covers enough detail to answer your question...if not, we'll probably need more detail to figure out what you're really wanting to kno.

Related

QSPI connection on STM32 microcontrollers with other peripherals instead of Flash memories

I will start a project which needs a QSPI protocol. The component I will use is a 16-bit ADC which supports QSPI with all combinations of clock phase and polarity. Unfortunately, I couldn't find a source on the internet that points to QSPI on STM32, which works with other components rather than Flash memories. Now, my question: Can I use STM32's QSPI protocol to communicate with other devices that support QSPI? Or is it just configured to be used for memories?
The ADC component I want to use is: ADS9224R (16-bit, 3MSPS)
Here is the image of the datasheet that illustrates this device supports the full QSPI protocol.
Many thanks
page 33 of the datasheet
The STM32 QSPI can work in several modes. The Memory Mapped mode is specifically designed for memories. The Indirect mode however can be used for any peripheral. In this mode you can specify the format of the commands that are exchanged: presence of an instruction, of an adress, of data, etc...
See register QUADSPI_CCR.
QUADSPI supports indirect mode, where for each data transaction you manually specify command, number of bytes in address part, number of data bytes, number of lines used for each part of the communication and so on. Don't know whether HAL supports all of that, it would probably be more efficient to work directly with QUADSPI registers - there are simply too many levers and controls you need to set up, and if the library is missing something, things may not work as you want, and QUADSPI is pretty unpleasant to debug. Luckily, after initial setup, you probably won't need to change very much in its settings.
In fact, some time ago, when I was learning QUADSPI, I wrote my own indirect read/write for QUADSPI flash. Purely a demo program for myself. With a bit of tweaking it shouldn't be hard to adapt it. From my personal experience, QUADSPI is a little hard at first, I spent a pair of weeks debugging it with logic analyzer until I got it to work. Or maybe it was due to my general inexperience.
Below you can find one of my functions, which can be used after initial setup of QUADSPI. Other communication functions are around the same length. You only need to set some settings in a few registers. Be careful with the order of your register manipulations - there is no "start communication" flag/bit/command. Communication starts automatically when you set some parameters in specific registers. This is explicitly stated in the reference manual, QUADSPI section, which was the only documentation I used to write my code. There is surprisingly limited information on QUADSPI available on the Internet, even less with registers.
Here is a piece from my basic example code on registers:
void QSPI_readMemoryBytesQuad(uint32_t address, uint32_t length, uint8_t destination[]) {
while (QUADSPI->SR & QUADSPI_SR_BUSY); //Make sure no operation is going on
QUADSPI->FCR = QUADSPI_FCR_CTOF | QUADSPI_FCR_CSMF | QUADSPI_FCR_CTCF | QUADSPI_FCR_CTEF; // clear all flags
QUADSPI->DLR = length - 1U; //Set number of bytes to read
QUADSPI->CR = (QUADSPI->CR & ~(QUADSPI_CR_FTHRES)) | (0x00 << QUADSPI_CR_FTHRES_Pos); //Set FIFO threshold to 1
/*
* Set communication configuration register
* Functional mode: Indirect read
* Data mode: 4 Lines
* Instruction mode: 4 Lines
* Address mode: 4 Lines
* Address size: 24 Bits
* Dummy cycles: 6 Cycles
* Instruction: Quad Output Fast Read
*
* Set 24-bit Address
*
*/
QUADSPI->CCR =
(QSPI_FMODE_INDIRECT_READ << QUADSPI_CCR_FMODE_Pos) |
(QIO_QUAD << QUADSPI_CCR_DMODE_Pos) |
(QIO_QUAD << QUADSPI_CCR_IMODE_Pos) |
(QIO_QUAD << QUADSPI_CCR_ADMODE_Pos) |
(QSPI_ADSIZE_24 << QUADSPI_CCR_ADSIZE_Pos) |
(0x06 << QUADSPI_CCR_DCYC_Pos) |
(MT25QL128ABA1EW9_COMMAND_QUAD_OUTPUT_FAST_READ << QUADSPI_CCR_INSTRUCTION_Pos);
QUADSPI->AR = (0xFFFFFF) & address;
/* ---------- Communication Starts Automatically ----------*/
while (QUADSPI->SR & QUADSPI_SR_BUSY) {
if (QUADSPI->SR & QUADSPI_SR_FTF) {
*destination = *((uint8_t*) &(QUADSPI->DR)); //Read a byte from data register, byte access
destination++;
}
}
QUADSPI->FCR = QUADSPI_FCR_CTOF | QUADSPI_FCR_CSMF | QUADSPI_FCR_CTCF | QUADSPI_FCR_CTEF; //Clear flags
}
It is a little crude, but it may be a good starting point for you, and it's well-tested and definitely works. You can find all my functions here (GitHub). Combine it with reading the QUADSPI section of the reference manual, and you should start to get a grasp of how to make it work.
Your job will be to determine what kind of commands and in what format you need to send to your QSPI slave device. That information is available in the device's datasheet. Make sure you send command and address and every other part on the correct number of QUADSPI lines. For example, sometimes you need to have command on 1 line and data on all 4, all in the same transaction. Make sure you set dummy cycles, if they are required for some operation. Pay special attention at how you read data that you receive via QUADSPI. You can read it in 32-bit words at once (if incoming data is a whole number of 32-bit words). In my case - in the function provided here - I read it by individual bytes, hence such a scary looking *destination = *((uint8_t*) &(QUADSPI->DR));, where I take an address of the data register, cast it to pointer to uint8_t and dereference it. Otherwise, if you read DR just as QUADSPI->DR, your MCU reads 32-bit word for every byte that arrives, and QUADSPI goes crazy and hangs and shows various errors and triggers FIFO threshold flags and stuff. Just be mindful of how you read that register.

STM32 - I2C - Write Sequential Data

I'm using AT24C512 EEPROM which is 512KB along with my STM32
I'm able to write 128bytes of data at once using
HAL_I2C_Mem_Write(&_EEPROM24XX_I2C,0xa0,Address,I2C_MEMADD_SIZE_16BIT,(uint8_t*)data,size_of_data,100)
but the issue is that i want to write more data after the data that was just wrote, but the EEPROM will replace the data as the Address is the same
so how can i skip the written address ?
This answer is not about using HAL with I2C, but hope it will point you
Just check datasheet (I looking into STM32F0) and you can see that the limit is 255 bytes (register CR2:NBYTES), I'm not sure if there is another limitation in HAL, but using direct access to registers you can sent 255 bytes at once or fragment it and sent how much you want.
For fragmenting there is bit CR2:RELOAD, if you set this, then at the end will be not transfer stopped, and you can update next NBYTES, .. when you will set last block of bytes (which will fit into NBYTES) then clear bit CR2:RELOAD.
This has one disadvantage, that every 255 bytes, you will be interrupted.
i think you should check the AT24C512 datasheet page 7.
If more
than 128 data words are transmitted to the EEPROM, the
data word address will
“
roll over
”
and previous data will be
overwritten. The address
“
roll over
”
during write is from the
last byte of the current page to the first byte of the same
page.

Why do my ath9k generated RadioTap headers seems malformed?

I'm collecting 802.11 packets using scapy on Ubuntu 16.04 (4.4 kernel). The RadioTap headers for my packets have the following present flags:
present=TSFT+Flags+Rate+Channel+dBm_AntSignal+b14+b29+Ext
Given the description of RadioTap, I would expect Channel to start on the 10th byte following the header and preceding fields (8 for TSFT + 1 each for Flags and Rate). Channel has an alignment of 2, so there is no need for padding. Yet this is what is in the undecoded portion of the packet:
notdecoded=' \x08\x00\x00\x00\x00\x00\x00f\xc0 \x02\x00\x00\x00\x00\x10\x02l\t\xa0\x00\xa9\x00\x00\x00\xa9\x00'
In this case the channel number actually appears at bytes 18-19 ('l\t' = 2412), and im not sure exactly what byte contains the dBm signal strength.
Anyone have an idea as to what i'm missing?
Found the answer after digging into the spec a bit deeper:
Scapy doesn't parse extended headers as signified by bit-32 (though it did tell me about them by stating +Ext above). Those extra headers are stuffed on the front of 'notdecoded' section of the packet. I think scapy should, at minimum, remove those extended headers from not-decoded to avoid future confusion.
In this particular case there are two extra 32 bit extended bitmap headers, accounting for the extra 8 bytes.
If someone wants to write an answer up with more detail, ill accept it, otherwise i will clean this answer up and accept it for perpetuity.

MPU6050 raw sensor data, zero

I am trying to get raw values of ACCEL_OUT from MPU6050 (GY-521 module). I can read WHO_AM_I register and I can write to PWR_MGM_1 (0x6B) register and change it default value from 0x40 to 0x00 ( when I write to register, I can read 0x00). and interrupts are handled fair, I need to access raw data of sensors. but when I read ACCEL_OUT registers, for example (ACCEL_ZOUT_L) it just return 0x00. I spend a whole night and a whole day on this problem and nothing good happened at all.
Any advise would be great help.
Thnx.
I solved the problem, it was I2C NACK and STOP in read command.

Midi Message need help

How do I interpret dwParam1 from the midiInProc delegate into midi status message like note-off, or note-on, control change?
Because as long i try dwParam1 is 254, and is not equal to note-off or anything else.
You won't necessarily receive note-offs from every input device. IIRC it is legal for a device to send a note-on with volume=0 as a substitute for note-off. Also a drum stream (from a drum machine and/or on MIDI channel 10) I believe commonly contains only note-ons, no note-offs.
Given that your question mentions dwParam1 and midiInProc, I'm assuming this is for Windows. When you receive MIM_DATA in your midiInProc, you can parse dwParam1 as follows:
For the status byte (command and channel), use LOBYTE(dwParam1).
For the first data byte, use HIBYTE(dwParam1).
If applicable, for the second data byte, use LOBYTE(HIWORD(dwParam1)).
I'm not entirely sure what you are asking, but I think you are trying to figure out how to interpret MIDI data.
I suggest this resource:
http://www.midi.org/techspecs/midimessages.php
MIDI messages related to notes are differentiated by the first 4 bits, not by the whole byte. The last four bits of the first byte specify the channel.
The answer by #Conrad Albrecht is mostly right, but I wanted to chip in with an answer (instead of a comment), as I think that the original poster is probably being confused by MIDI running status.
If you are seeing bytes which don't resemble normal MIDI status bytes, you can assume that they are of the same type as the previous byte which you received. Therefore it is not only legal, but very common, to use MIDI note on events with velocity of 0 as a substitute for MIDI note offs.
You should just interpret these bytes as the normal second two bytes of a MIDI note on event.