I have two collections Members and MobileUserLocations - where each users locations is saved(Can be multiple) as userId as the foreign field.
Members:
{
_id: ObjectId("591553ffa4233a181506880c"),
userName: "Test user"
}
MobileUserLocations:
{ _id: ObjectId("59156070a4233a1815068b6b"),
userId: ObjectId("591553ffa4233a181506880c"),
location: {type: "Point", coordinates: [76.9121, 10.2232]]},
updatedOn: 2017-05-12T07:12:48.626Z,
status: 1
},
{ _id: ObjectId("59156070a4233a1815068b6b"),
userId: ObjectId("591553ffa4233a181506880c"),
location: {type: "Point", coordinates: [76.8121, 10.1232]]},
updatedOn: 2017-05-12T07:12:48.626Z,
status: 1
}
I want to get the Members who are within a radius - say 5km with reference to a particular geo point - say: [10.0132295, 76.3630502] (lat,lng format).
I tried this:
collection.aggregate([
{$match: {_id: { $ne: options.accessToken.userId }},
{ "$lookup": {
"localField": "_id",
"from": "MobileUserLocations",
"foreignField": "userId",
"as": "userLocInfo"
}
},
{
$project: {
_id: 1,
userLocInfo: {
"$filter": {
"input": "$userLocInfo",
"as": "userLoc",
"cond": {
"$eq": [ "$$userLoc.status", -1],
"$$userLoc.location": {"$geoWithin": {"$centerSphere": [[76.3630502, 10.0132295], 5 / 3963.2]}}
}
}
}
}
},
{$unwind: "$userLocInfo"}
]
But not getting. If I am removing the $geowithin from the filter cond, it is getting, otherwise not getting. But if I am individullay querying the collections, I am getting the result.
Can anyone know the issue?
That does not work because $geoWithin is not a "logical operator", but it's a "query operator" and can only be used in an aggregation pipeline using $match. Fortunately for you, that is really what you want. Though you don't yet see why:
collection.aggregate([
{ "$match": {
"_id": { "$ne": options.accessToken.userId }
}},
{ "$lookup": {
"localField": "_id",
"from": "MobileUserLocations",
"foreignField": "userId",
"as": "userLocInfo"
}},
{ "$unwind": "$userLocInfo" },
{ "$match": {
"userLocInfo.status": -1,
"userLocInfo.updatedOn": "2017-05-12T12:11:04.183Z",
"userLocInfo.location": {
"$geoWithin": {
"$centerSphere": [[76.3630502, 10.0132295], 5 / 3963.2]
}
}
}}
])
There's a really good reason for that aside from it's the only way it works. To understand, look at the "explain" output:
{
"$lookup" : {
"from" : "MobileUserLocations",
"as" : "userLocInfo",
"localField" : "_id",
"foreignField" : "userId",
"unwinding" : {
"preserveNullAndEmptyArrays" : false
},
"matching" : {
"$and" : [
{
"status" : {
"$eq" : -1.0
}
},
{
"updatedOn" : {
"$eq" : "2017-05-12T12:11:04.183Z"
}
},
{
"location" : {
"$geoWithin" : {
"$centerSphere" : [
[
76.3630502,
10.0132295
],
0.00126160678239806
]
}
}
}
]
}
}
}
What that shows you is that both the $unwind and following $match get absorbed into the $lookup stage itself. This means that the $geoWithin and other conditions are actually executed on the foreign collection "before" the results are returned.
This is how $lookup deals with resulting joins that can possibly breach the 16MB limit. It's also the most efficient way you can presently "filter" results of the join.
So that's what you really want to do here instead.
Based on the data in your question, this statement:
db.members.aggregate([
{ "$lookup": {
"localField": "_id",
"from": "MobileUserLocations",
"foreignField": "userId",
"as": "userLocInfo"
}},
{ "$unwind": "$userLocInfo" },
{ "$match": {
"userLocInfo.location": {
"$geoWithin": {
"$centerSphere": [[76.9121, 10.2232], 5 / 3963.2]
}
}
}}
])
Filters out the one location in $lookup that matches the constraint:
/* 1 */
{
"_id" : ObjectId("591553ffa4233a181506880c"),
"userName" : "Test user",
"userLocInfo" : {
"_id" : ObjectId("59c3c37359f55d64d6e30297"),
"userId" : ObjectId("591553ffa4233a181506880c"),
"location" : {
"type" : "Point",
"coordinates" : [
76.9121,
10.2232
]
},
"updatedOn" : ISODate("2017-05-12T07:12:48.626Z"),
"status" : 1.0
}
}
Related
I have a collection myCollection
{
name : String,
members: [{status : Number, memberId : {type: Schema.Types.ObjectId, ref: 'members'}]
}
with this data :
"_id" : ObjectId("5e8b0bac041a913bc608d69d")
"members" : [
{
"status" : 4,
"_id" : ObjectId("5e8b0bac041a913bc608d69e"),
"memberId" : ObjectId("5e7dbf5b257e6b18a62f2da9"),
"date" : ISODate("2020-04-06T10:59:56.997Z")
},
{
"status" : 1,
"_id" : ObjectId("5e8b0bf2041a913bc608d6a3"),
"memberId" : ObjectId("5e7e2f048f80b46d786bfd67"),
"date" : ISODate("2020-04-06T11:01:06.463Z")
}
],
and a collection members
{
firstname : String
lastname : String
}
with this data :
[{
"_id" : ObjectId("5e7dbf5b257e6b18a62f2da9"),
"firstname" : "raed",
"lastname" : "besbes"
},
{
"_id" : ObjectId("5e7e2f048f80b46d786bfd67"),
"firstname" : "sarra",
"lastname" : "besbes"
}]
I make a query with aggregate and $lookup, to have the data populated but I want to restrict returned
data on status 1 only, this is my query and result.
how can I get data populated with only status 1 members returned ? Thank you.
query
db.getCollection('myCollection').aggregate([
{ $match: { _id: ObjectId("5e8b0bac041a913bc608d69d")}},
{
"$lookup": {
"from": "members",
"localField": "members.memberId",
"foreignField": "_id",
"as": "Members"
}
},
{
$project: {
"Members.firstname" : 1,
"Members.lastname" : 1,
"Members._id" : 1,
},
}
])
result
{
"_id" : ObjectId("5e8b0bac041a913bc608d69d"),
"Members" : [
{
"_id" : ObjectId("5e7dbf5b257e6b18a62f2da9"),
"firstname" : "raed",
"lastname" : "besbes"
},
{
"_id" : ObjectId("5e7e2f048f80b46d786bfd67"),
"firstname" : "sarra",
"lastname" : "besbes"
}
]
}
Option 1
Filter members before $lookup
db.myCollection.aggregate([
{
$match: {
_id: ObjectId("5e8b0bac041a913bc608d69d")
}
},
{
$addFields: {
members: {
$filter: {
input: "$members",
cond: {
$eq: [
"$$this.status",
1
]
}
}
}
}
},
{
"$lookup": {
"from": "members",
"localField": "members.memberId",
"foreignField": "_id",
"as": "Members"
}
},
{
$project: {
"Members.firstname": 1,
"Members.lastname": 1,
"Members._id": 1
}
}
])
MongoPlayground
Option 2
(Similar to 1) We flatten member array, filter only status = 1 and then perform $lookup.
db.myCollection.aggregate([
{
$match: {
_id: ObjectId("5e8b0bac041a913bc608d69d")
}
},
{
"$unwind": "$members"
},
{
$match: {
"members.status": 1
}
},
{
"$lookup": {
"from": "members",
"localField": "members.memberId",
"foreignField": "_id",
"as": "Members"
}
},
{
"$unwind": "$Members"
},
{
$group: {
_id: "$_id",
Members: {
$push: "$Members"
}
}
}
])
MongoPlayground
Option 3
We can apply filter for Member array based on filtered values for member array.
db.myCollection.aggregate([
{
$match: {
_id: ObjectId("5e8b0bac041a913bc608d69d")
}
},
{
"$lookup": {
"from": "members",
"localField": "members.memberId",
"foreignField": "_id",
"as": "Members"
}
},
{
$project: {
Members: {
$filter: {
input: "$Members",
cond: {
$in: [
"$$this._id",
{
$let: {
vars: {
input: {
$filter: {
input: "$members",
cond: {
$eq: [
"$$this.status",
1
]
}
}
}
},
in: "$$input.memberId"
}
}
]
}
}
}
}
}
])
MongoPlayground
I have two collections, tennis matches with two players and players.
matches looks like this:
{
"_id" : ObjectId("5ce51febc6dd820a820f20a5"),
"players" : [
ObjectId("5ce51c1af3cd6009a171a5b3"),
ObjectId("5ce51c1af3cd6009a171a350")
],
"result" : "4:6 6:3 7:6(7) 7:6(8)"
},
{
"_id" : ObjectId("5ce51febc6dd820a820f20a6"),
"players" : [
ObjectId("5ce51c1af3cd6009a171a005"),
ObjectId("5ce51c1af3cd6009a171a16c")
],
"result" : "6:2 4:6 6:3"
},
[...]
and players like this:
{
"_id" : ObjectId("5ce51c1af3cd6009a171a5b3"),
"name" : "Serena Williams",
"country" : "USA"
},
{
"_id" : ObjectId("5ce51c1af3cd6009a171a350"),
"name" : "Garbiñe Muguruza",
"country" : "Spain"
},
[...]
I need all matches where players[0] is equal to a name and players[1] to another name.
I've tried this without success:
db.matches.aggregate([
{
$unwind: "$players"
},
{
$lookup: {
from: "players",
localField: "players",
foreignField: "_id",
as: "tmp_join"
}
},
{
$match: {
"tmp_join.name": ["Serena Williams","Garbiñe Muguruza"]
}
}
])
You have to first $unwind the tmp_join array and then you can use $in to find the documents contain name.
db.matches.aggregate([
{ "$lookup": {
"from": "players",
"localField": "players",
"foreignField": "_id",
"as": "tmp_join"
}},
{ "$unwind": "$tmp_join" },
{ "$match": {
"tmp_join.name": {
"$in": ["Serena Williams","Garbiñe Muguruza"]
}
}}
])
Use below aggregation if you are using mongodb 3.6 and above
db.matches.aggregate([
{ "$lookup": {
"from": "players",
"let": { "players": "$players" },
"pipeline": [
{ "$match": {
"$expr": { "$in": ["$_id", "$$players"] },
"name": { "$in": ["Serena Williams", "Garbiñe Muguruza"] }
}}
],
"as": "tmp_join"
}},
{ "$match": { "$expr": { "$gt": [{ "$size": "$tmp_join" }, 1] }}}
])
I have a course collection in which I am allotting teachers for each subject of that course. The allotment is saved as an array of JSON please take a look at the reference doc below.
{
"_id" : ObjectId("5cc7d72d8e165005cbef939e"),
"isAssigned" : true,
"name" : "11",
"section" : "A",
"allotment" : [
{
"subject" : ObjectId("5cc3f7cc88e95a0c8e8ccd7d"),
"teacher" : ObjectId("5cbee0e37a3c852868ec9797")
},
{
"subject" : ObjectId("5cc3f80e88e95a0c8e8ccd7e"),
"teacher" : ObjectId("5cbee10c7a3c852868ec9798")
}
]
}
I am trying to match the subject and teacher fields along with their doc from two different collections. I could get them in two different array's but couldn't get them as structured in my expected output
Doc in teachers collection
{
_id: ObjectId("5cbee0e37a3c852868ec9797"),
name: "Alister"
}
Doc in subject
{
_id: ObjectId("5cc3f7cc88e95a0c8e8ccd7d"),
name: "English",
code: "EN"
}
Query I tried
Course.aggregate([
{"$match": matchQuery},
{"$lookup": {
"from": "subjects",
"localField": "allotment.subject",
"foreignField": "_id",
"as": "subjectInfo"
}
},
{"$lookup": {
"from": "teachers",
"localField": "allotment.teacher",
"foreignField": "_id",
"as": "teacherInfo"}
},
])
Output of that Query
{
isAssigned: true
name: "11"
section: "A"
subjectInfo:[
{_id: "5cc3f7cc88e95a0c8e8ccd7d", name:"English", code:"EN"}
{_id: "5cc3f80e88e95a0c8e8ccd7e", name: "Science", code:"SC"}
]
teacherInfo:[
{_id: ObjectId("5cbee0e37a3c852868ec9797"),name: "Alister"},
{ _id: ObjectId("5cbee10c7a3c852868ec9798"),name: "Frank"}
]
}
Expexted output
{
"_id" : ObjectId("5cc7d72d8e165005cbef939e"),
"isAssigned" : true,
"name" : "11",
"section" : "A",
"allotment" : [
{
"subject" : {
_id: ObjectId("5cc3f7cc88e95a0c8e8ccd7d"),
name: "English",
code: "EN"
}
"teacher" : {
_id: ObjectId("5cbee0e37a3c852868ec9797"),
name: "Alister"
}
},
{
"subject" : {
_id: ObjectId("5cc3f80e88e95a0c8e8ccd7e"),
name: "Science",
code: "SC"
}
"teacher" : {
_id: ObjectId("5cbee10c7a3c852868ec9798"),
name: "Frank"
}
}
]
}
Just unwind the array before the lookups:
Course.aggregate([
{"$match": matchQuery},
{"$unwind: "$allotment"}
{"$lookup": {
"from": "subjects",
"localField": "allotment.subject",
"foreignField": "_id",
"as": "subjectInfo"
}
},
{"$lookup": {
"from": "teachers",
"localField": "allotment.teacher",
"foreignField": "_id",
"as": "teacherInfo"}
},
])
if you want to re-group after that to restore expected format you can add:
{ $group : {
_id: "$_id",
name: {$first: "$name"},
section: {$first: "$section},
isAssigned: {$first: "$isAssigned},
allotment: {$push: {teacher: "$teacherInfo.0", subject: "$subjectInfo.0"}}
I'm assuming teacherInfo and subjectInfo are never empty, if this is not the case you should add a $match to filter empty ones.
Take a look at $lookup aggregation stage which lets you join collections. There's a plenty of examples on the usage in the documentation.
EDIT: Here's the complete pipeline that should provide the expected result:
courses.aggregate(
[
{
"$unwind" : {
"path" : "$allotment"
}
},
{
"$lookup" : {
"from" : "subjects",
"localField" : "allotment.subject",
"foreignField" : "_id",
"as" : "allotment.subject"
}
},
{
"$lookup" : {
"from" : "teachers",
"localField" : "allotment.teacher",
"foreignField" : "_id",
"as" : "allotment.teacher"
}
},
{
"$addFields" : {
"allotment.subject" : {
"$arrayElemAt" : [
"$allotment.subject",
0.0
]
},
"allotment.teacher" : {
"$arrayElemAt" : [
"$allotment.teacher",
0.0
]
}
}
},
{
"$group" : {
"_id" : "$_id",
"isAssigned" : {
"$first" : "$isAssigned"
},
"name" : {
"$first" : "$name"
},
"section" : {
"$first" : "$section"
},
"allotment" : {
"$addToSet" : "$allotment"
}
}
}
]
)
Firstly you have to $unwind the allotment array and then apply $lookup for subject and then repeat same for teachers and finally apply $group to combine back it inside array. See below aggregate query that is have tried and its working for me.
Course.aggregate([
{"$match": matchQuery},
{
$unwind: '$allotment'
},
{
$lookup:{
"from": "subjects",
"localField": "allotment.subject",
"foreignField": "_id",
"as": "allotment.subject"
}
},
{
$unwind: '$allotment.subject'
},
{
"$lookup": {
"from": "teachers",
"localField": "allotment.teacher",
"foreignField": "_id",
"as": "allotment.teacher"
}
},
{
$unwind: '$allotment.teacher'
},
{
"$group" : {
"_id" : "$_id",
"isAssigned" : {
"$first" : "$isAssigned"
},
"name" : {
"$first" : "$name"
},
"section" : {
"$first" : "$section"
},
"allotment" : {
"$addToSet" : "$allotment"
}
}
}
])
I'm Strugling with some aggregation functions in mongodb.
I want to get books Documents in author's document that has just books ids as array of strings ids like this :
Author Document
{
"_id" : "10",
"full_name" : "Joi Dark",
"books" : ["100", "200", "351"],
}
And other documents (books) :
{
"_id" : "100",
"title" : "Node.js In Action",
"ISBN" : "121215151515154",
"date" : "2015-10-10"
}
So in result i want this :
{
"_id" : "10",
"full_name" : "Joi Dark",
"books" : [
{
"_id" : "100",
"title" : "Node.js In Action",
"ISBN" : "121215151515154",
"date" : "2015-10-10"
},
{
"_id" : "200",
"title" : "Book 2",
"ISBN" : "1212151454515154",
"date" : "2015-10-20"
},
{
"_id" : "351",
"title" : "Book 3",
"ISBN" : "1212151454515154",
"date" : "2015-11-20"
}
],
}
Use $lookup which retrieves data from the nominated collection in from based on the matching of the localField to the foreignField:
db.authors.aggregate([
{ "$lookup": {
"from": "$books",
"foreignField": "_id",
"localField": "books",
"as": "books"
}}
])
The as is where in the document to write an "array" containing the related documents. If you specify an existing property ( such as is done here ) then that property is overwritten with the new array content in output.
If you have a MongoDB before MongoDB 3.4 then you may need to $unwind the array of "books" as the localField first:
db.authors.aggregate([
{ "$unwind": "$books" },
{ "$lookup": {
"from": "$books",
"foreignField": "_id",
"localField": "books",
"as": "books"
}}
])
Which creates a new document for each array member in the original document, therefore use $unwind again and $group to create the original form:
db.authors.aggregate([
{ "$unwind": "$books" },
{ "$lookup": {
"from": "$books",
"foreignField": "_id",
"localField": "books",
"as": "books"
}},
{ "$unwind": "$books" },
{ "$group": {
"_id": "$_id",
"full_name": { "$first" "$full_name" },
"books": { "$push": "$books" }
}}
])
If in fact your _id values in the foreign collection of of ObjectId type, but you have values in the localField which are "string" versions of that, then you need to convert the data so the types match. There is no other way.
Run something like this through the shell to convert:
var ops = [];
db.authors.find().forEach(doc => {
doc.books = doc.books.map( book => new ObjectId(book.valueOf()) );
ops.push({
"updateOne": {
"filter": { "_id": doc._id },
"update": {
"$set": { "books": doc.books }
}
}
});
if ( ops.length >= 500 ) {
db.authors.bulkWrite(ops);
ops = [];
}
});
if ( ops.length > 0 ) {
db.authors.bulkWrite(ops);
ops = [];
}
That will convert all the values in the "books" array into real ObjectId values that can actually match in a $lookup operation.
Just adding on top of the previous answer. If your input consists of an array of strings and you want to convert them to ObjectIds, you can achieve this by using a projection, followed by a map and the $toObjectId method.
db.authors.aggregate([
{ $project: {
books: {
$map: {
input: '$books',
as: 'book',
in: { $toObjectId: '$$book' },
},
},
},},
{ $lookup: {
from: "$books",
foreignField: "_id",
localField: "books",
as: "books"
}
},
])
Ideally, your database would be formatted in such a manner that your aggregates are stored as ObjectIds, but in the case where that is not an option, this poses as a viable solution.
I have document like this in a collection called diagnoses :
{
"_id" : ObjectId("582d43d18ec3f432f3260682"),
"patientid" : ObjectId("582aacff3894c3afd7ad4677"),
"doctorid" : ObjectId("582a80c93894c3afd7ad4675"),
"medicalcondition" : "high fever, cough, runny nose.",
"diagnosis" : "Viral Flu",
"addmissiondate" : "2016-01-12",
"dischargedate" : "2016-01-16",
"bhtno" : "125",
"prescription" : [
{
"drug" : ObjectId("58345e0e996d340bd8126149"),
"instructions" : "Take 2 daily, after meals."
},
{
"drug" : ObjectId("5836bc0b291918eb42966320"),
"instructions" : "Take 1 daily, after meals."
}
]
}
The drug id inside the prescription object array is from a separate collection called drugs, see sample document below :
{
"_id" : ObjectId("58345e0e996d340bd8126149"),
"genericname" : "Paracetamol Tab 500mg",
"type" : "X",
"isbrand" : false
}
I am trying to create a mongodb query using the native node.js driver to get a result like this:
{
"_id" : ObjectId("582d43d18ec3f432f3260682"),
"patientid" : ObjectId("582aacff3894c3afd7ad4677"),
"doctorid" : ObjectId("582a80c93894c3afd7ad4675"),
"medicalcondition" : "high fever, cough, runny nose.",
"diagnosis" : "Viral Flu",
"addmissiondate" : "2016-01-12",
"dischargedate" : "2016-01-16",
"bhtno" : "125",
"prescription" : [
{
"drug" :
{
"_id" : ObjectId("58345e0e996d340bd8126149"),
"genericname" : "Paracetamol Tab 500mg",
"type" : "X",
"isbrand" : false
},
"instructions" : "Take 2 daily, after meals."
},
...
]
}
Any advice on how to approach a similar result like this is much appreciated, thanks.
Using MongoDB 3.4.4 and newer
With the aggregation framework, the $lookup operators supports arrays
db.diagnoses.aggregate([
{ "$addFields": {
"prescription": { "$ifNull" : [ "$prescription", [ ] ] }
} },
{ "$lookup": {
"from": "drugs",
"localField": "prescription.drug",
"foreignField": "_id",
"as": "drugs"
} },
{ "$addFields": {
"prescription": {
"$map": {
"input": "$prescription",
"in": {
"$mergeObjects": [
"$$this",
{ "drug": {
"$arrayElemAt": [
"$drugs",
{
"$indexOfArray": [
"$drugs._id",
"$$this.drug"
]
}
]
} }
]
}
}
}
} },
{ "$project": { "drugs": 0 } }
])
For older MongoDB versions:
You can create a pipeline that first flattens the prescription array using the $unwind operator and a $lookup subsequent pipeline step to do a "left outer join" on the "drugs" collection. Apply another $unwind operation on the created array from the "joined" field. $group the previously flattened documents from the first pipeline where there $unwind operator outputs a document for each element in the prescription array.
Assembling the above pipeline, run the following aggregate operation:
db.diagnoses.aggregate([
{
"$project": {
"patientid": 1,
"doctorid": 1,
"medicalcondition": 1,
"diagnosis": 1,
"addmissiondate": 1,
"dischargedate": 1,
"bhtno": 1,
"prescription": { "$ifNull" : [ "$prescription", [ ] ] }
}
},
{
"$unwind": {
"path": "$prescription",
"preserveNullAndEmptyArrays": true
}
},
{
"$lookup": {
"from": "drugs",
"localField": "prescription.drug",
"foreignField": "_id",
"as": "prescription.drug"
}
},
{ "$unwind": "$prescription.drug" },
{
"$group": {
"_id": "$_id",
"patientid" : { "$first": "$patientid" },
"doctorid" : { "$first": "$doctorid" },
"medicalcondition" : { "$first": "$medicalcondition" },
"diagnosis" : { "$first": "$diagnosis" },
"addmissiondate" : { "$first": "$addmissiondate" },
"dischargedate" : { "$first": "$dischargedate" },
"bhtno" : { "$first": "$bhtno" },
"prescription" : { "$push": "$prescription" }
}
}
])
Sample Output
{
"_id" : ObjectId("582d43d18ec3f432f3260682"),
"patientid" : ObjectId("582aacff3894c3afd7ad4677"),
"doctorid" : ObjectId("582a80c93894c3afd7ad4675"),
"medicalcondition" : "high fever, cough, runny nose.",
"diagnosis" : "Viral Flu",
"addmissiondate" : "2016-01-12",
"dischargedate" : "2016-01-16",
"bhtno" : "125",
"prescription" : [
{
"drug" : {
"_id" : ObjectId("58345e0e996d340bd8126149"),
"genericname" : "Paracetamol Tab 500mg",
"type" : "X",
"isbrand" : false
},
"instructions" : "Take 2 daily, after meals."
},
{
"drug" : {
"_id" : ObjectId("5836bc0b291918eb42966320"),
"genericname" : "Paracetamol Tab 100mg",
"type" : "Y",
"isbrand" : false
},
"instructions" : "Take 1 daily, after meals."
}
]
}
In MongoDB 3.6 or later versions
It seems that
$lookup will overwrite the original array instead of merging it.
A working solution (a workaround, if you prefer) is to create a different field,
and then merge two fields, as shown below:
db.diagnoses.aggregate([
{ "$lookup": {
"from": "drugs",
"localField": "prescription.drug",
"foreignField": "_id",
"as": "prescription_drug_info"
} },
{ "$addFields": {
"merged_drug_info": {
"$map": {
"input": "$prescription",
"in": {
"$mergeObjects": [
"$$this",
{ "$arrayElemAt": [
"$prescription_drug_info._id",
"$$this._id"
] }
]
}
}
}
} }
])
This would add two more fields and the name of the desired field
will be merged_drug_info. We can then add $project stage to filter
out excessive fields and $set stage to rename the field:
...
{ "$set": { "prescription": "$merged_drug_info" } },
{ "$project": { "prescription_drug_info": 0, "merged_drug_info": 0 } }
...