Gradient descent for small and large values of multidimensional matrix - matlab

I have a matrix R which I want to estimate using gradient descent method. The code is working good for small dimension matrix (e.g. 100x1) but it gives NaN values as I increase dimension (e.g. 10x3). Please help!
R =[196,242,3;186,302,3;22,377,1;244,51,2;166,346,1;298,474,4;115,265,2;253,465,5;305,451,3;6,86,3];
N = length(R);
M = size(R,2);
K = 3;
P = rand(N,K);
Q = rand(M,K);
alpha = 0.002;
beta = 0.02;
for iter = 1 : 5000
e = R - P*Q';
P_new = P + 2*alpha*(e*Q-beta*P);
Q_new= Q + 2*alpha*(e'*P-beta*Q);
mse2(iter) = norm(R - P*Q')/norm(R);
P=P_new;
Q=Q_new;
end
R_est = P*Q';

Your problem lies in the for loop. The largest double matlab can store is 1.7977e+308, after 7 runs of the loop your values for P and Q are on the order of 10^101 and after 8 runs inf. I'm not sure what you mean by estimate matrix but your nanvalues are coming from the way P an Q grow so rapidly. One other things of note, the mse2 variable is not to used. What is its purpose?

Related

Matlab function for cumulative power

Is there a function in MATLAB that generates the following matrix for a given scalar r:
1 r r^2 r^3 ... r^n
0 1 r r^2 ... r^(n-1)
0 0 1 r ... r^(n-2)
...
0 0 0 0 ... 1
where each row behaves somewhat like a power analog of the CUMSUM function?
You can compute each term directly using implicit expansion and element-wise power, and then apply triu:
n = 5; % size
r = 2; % base
result = triu(r.^max((1:n)-(1:n).',0));
Or, maybe a little faster because it doesn't compute unwanted powers:
n = 5; % size
r = 2; % base
t = (1:n)-(1:n).';
u = find(t>=0);
t = t(u);
result = zeros(n);
result(u) = r.^t;
Using cumprod and triu:
% parameters
n = 5;
r = 2;
% Create a square matrix filled with 1:
A = ones(n);
% Assign the upper triangular part shifted by one with r
A(triu(A,1)==1)=r;
% cumprod along the second dimension and get only the upper triangular part
A = triu(cumprod(A,2))
Well, cumsum accumulates the sum of a vector but you are asking for a specially design matrix, so the comparison is a bit problematic....
Anyway, it might be that there is a function for this if this is a common special case triangular matrix (my mathematical knowledge is limited here, sorry), but we can also build it quite easily (and efficiently=) ):
N = 10;
r = 2;
% allocate arry
ary = ones(1,N);
% initialize array
ary(2) = r;
for i = 3:N
ary(i) = ary(i-1)*r;
end
% build matrix i.e. copy the array
M = eye(N);
for i = 1:N
M(i,i:end) = ary(1:end-i+1);
end
This assumes that you want to have a matrix of size NxN and r is the value that you want calculate the power of.
FIX: a previous version stated in line 13 M(i,i:end) = ary(i:end);, but the assignment needs to start always at the first position of the ary

Serious performance issue with iterating simulations

I recently stumbled upon a performance problem while implementing a simulation algorithm. I managed to find the bottleneck function (signally, it's the internal call to arrayfun that slows everything down):
function sim = simulate_frequency(the_f,k,n)
r = rand(1,n); %
x = arrayfun(#(x) find(x <= the_f,1,'first'),r);
sim = (histcounts(x,[1:k Inf]) ./ n).';
end
It is being used in other parts of code as follows:
h0 = zeros(1,sims);
for i = 1:sims
p = simulate_frequency(the_f,k,n);
h0(i) = max(abs(p - the_p));
end
Here are some possible values:
% Test Case 1
sims = 10000;
the_f = [0.3010; 0.4771; 0.6021; 0.6990; 0.7782; 0.8451; 0.9031; 0.9542; 1.0000];
k = 9;
n = 95;
% Test Case 2
sims = 10000;
the_f = [0.0413; 0.0791; 0.1139; 0.1461; 0.1760; 0.2041; 0.2304; 0.2552; 0.2787; 0.3010; 0.3222; 0.3424; 0.3617; 0.3802; 0.3979; 0.4149; 0.4313; 0.4471; 0.4623; 0.4771; 0.4913; 0.5051; 0.5185; 0.5314; 0.5440; 0.5563; 0.5682; 0.5797; 0.5910; 0.6020; 0.6127; 0.6232; 0.6334; 0.6434; 0.6532; 0.6627; 0.6720; 0.6812; 0.6901; 0.6989; 0.7075; 0.7160; 0.7242; 0.7323; 0.7403; 0.7481; 0.7558; 0.7634; 0.7708; 0.7781; 0.7853; 0.7923; 0.7993; 0.8061; 0.8129; 0.8195; 0.8260; 0.8325; 0.8388; 0.8450; 0.8512; 0.8573; 0.8633; 0.8692; 0.8750; 0.8808; 0.8864; 0.8920; 0.8976; 0.9030; 0.9084; 0.9138; 0.9190; 0.9242; 0.9294; 0.9344; 0.9395; 0.9444; 0.9493; 0.9542; 0.9590; 0.9637; 0.9684; 0.9731; 0.9777; 0.9822; 0.9867; 0.9912; 0.9956; 1.000];
k = 90;
n = 95;
The scalar sims must be in the range 1000 1000000. The vector of cumulated frequencies the_f never contains more than 100 elements. The scalar k represents the number of elements in the_f. Finally, the scalar n represents the number of elements in the empirical sample vector, and can even be very large (up to 10000 elements, as far as I can tell).
Any clue about how to improve the computation time of this process?
This seems to be slightly faster for me in the second test case, not the first. The time differences might be larger for longer the_f and larger values of n.
function sim = simulate_frequency(the_f,k,n)
r = rand(1,n); %
[row,col] = find(r <= the_f); % Implicit singleton expansion going on here!
[~,ind] = unique(col,'first');
x = row(ind);
sim = (histcounts(x,[1:k Inf]) ./ n).';
end
I'm using implicit singleton expansion in r <= the_f, use bsxfun if you have an older version of MATLAB (but you know the drill).
Find then returns row and column to all the locations where r is larger than the_f. unique finds the indices into the result for the first element of each column.
Credit: Andrei Bobrov over on MATLAB Answers
Another option (derived from this other answer) is a bit shorter but also a bit more obscure IMO:
mask = r <= the_f;
[x,~] = find(mask & (cumsum(mask,1)==1));
If I want performance, I would avoid arrayfun. Even this for loop is faster:
function sim = simulate_frequency(the_f,k,n)
r = rand(1,n); %
for i = 1:numel(r)
x(i) = find(r(i)<the_f,1,'first');
end
sim = (histcounts(x,[1:k Inf]) ./ n).';
end
Running 10000 sims with the first set of the sample data gives the following timing.
Your arrayfun function:
>Elapsed time is 2.848206 seconds.
The for loop function:
>Elapsed time is 0.938479 seconds.
Inspired by Cris Luengo's answer, I suggest below:
function sim = simulate_frequency(the_f,k,n)
r = rand(1,n); %
x = sum(r > the_f)+1;
sim = (histcounts(x,[1:k Inf]) ./ n)';
end
Time:
>Elapsed time is 0.264146 seconds.
You can use histcounts with r as its input:
r = rand(1,n);
sim = (histcounts(r,[-inf ;the_f]) ./ n).';
If histc is used instead of histcounts the whole simulation can be vectorized:
r = rand(n,sims);
p = histc(r, [-inf; the_f],1);
p = [p(1:end-2,:) ;sum(p(end-1:end,:))]./n;
h0 = max(abs(p-the_p(:))); %h0 = max(abs(bsxfun(#minus,p,the_p(:))));

Performance of using a matrix as vector index

In my code I have a slow part of which the idea can be summarized in the following short example:
A = randi(10,5); %Random 5×5 matrix containing integers ranging from 0 to 10
B = rand(10,1); %Random 10×1 vector containing values ranging from 0 to 1
C = B(A); %New 5×5 matrix consisting of elements from B, indexed using A
In my case, the matrix A is sized 1000×1000, B is a 500×1 vector and C is also 1000×1000. Given that this 3rd line is in a for loop, where A is constant and B is updated every iteration, how can I further improve speed performance? According to the profile viewer 75% of code execution is at this single line. As expected, using a for loop for this operation is much slower (10x for a 1000×1000 matrix):
AA = A(:); %Convert matrix to vector
for k=1:length(AA) %Loop through this vector and use it as index
D(k) = B(AA(k));
end
E = reshape(D,5,5); %Reshape vector to matrix of 5x5
Any ideas to optimize this?
Edit: Script used to measure performance:
N = 1500;
A = randi(500,N);
AA = A(:);
D = zeros(N,N);
B = rand(500,1);
f1 = #() VectorIndex(A,B);
timeit(f1,1)
f2 = #() LoopIndex(AA,B,N);
timeit(f2,1)
function C = VectorIndex(A,B)
C = B(A);
end
function D = LoopIndex(AA,B,N)
D = zeros(N,N);
for k=1:length(AA)
D(k) = B(AA(k));
end
D = reshape(D,N,N);
end

Summing scalars and vectors [MATLAB]

First off; I'm not very well taught in programming, but i tend to learn exactly what I need to learn in order to do what I want when programming, I have moderate experience with python, html/css C and matlab. I've now enrolled in a physics-simulation course where I use matlab to compute the trajectory of 500 particles under the influence of 5 force-fields of different magnitude.
So now to my thing; I need to write the following for all i=1...500 particles
f_i = m*g - sum{(f_k/r_k^2)*exp((||vec(x)_i - vec(p)_k||^2)/2*r_k^2)(vec(x)_i - vec(p)_k)}
I hope its not too cluttered
And here is my code so far;
clear all
close all
echo off
%Simulation Parameters-------------------------------------------
h = 0.01; %Time-step h (s)
t_0 = 0; %initial time (s)
t_f = 3; %final time (s)
m = 1; %Particle mass (kg)
L = 5; %Charateristic length (m)
NT = t_f/h; %Number of time steps
g = [0,-9.81];
f = [32 40 28 16 20]; %the force f_k (N)
r = [0.3*L 0.2*L 0.4*L 0.5*L 0.3*L]; %the radii r_k
p = [-0.2*L 0.8*L; -0.3*L -0.8*L; -0.6*L 0.1*L;
0.4*L 0.7*L; 0.8*L -0.3*L];
%Forcefield origin position
%stepper = 'forward_euler'; % use forward Euler time-integration
fprintf('Simulation Parameters set');
%initialization---------------------------------------------------
for i = 1:500 %Gives inital value to each of the 500 particles
particle{i,1}.x = [-L -L];
particle{i,1}.v = [5,10];
particle{i,1}.m = m;
for k = 1:5
C = particle{i}.x - p(k,:);
F = rdivide(f(1,k),r(1,k)^2).*C
%clear C; %Creates elements for array F
end
particle{i}.fi = m*g - sum(F); %Compute attractive force on particle
%clear F; %Clear F for next use
end
What this code seems to do is that it goes into the first loop with index i, then goes through the 'k'-loop and exits it with a value for F then uses that last value for F(k) to compute f_i.
What I want it to do is to put all the values of F(k) from 1-5 and put into a matrix which columns I can sum for f_i. I'd prefer to sum the columns as the first column should represent all F-components in the x-axis and the second column all F-components in the y-axis.
Note that the expression for F in the k-loop is not done.
I fixed it by defining the index for F(k,:)

Multiply a 3D matrix with a 2D matrix

Suppose I have an AxBxC matrix X and a BxD matrix Y.
Is there a non-loop method by which I can multiply each of the C AxB matrices with Y?
As a personal preference, I like my code to be as succinct and readable as possible.
Here's what I would have done, though it doesn't meet your 'no-loops' requirement:
for m = 1:C
Z(:,:,m) = X(:,:,m)*Y;
end
This results in an A x D x C matrix Z.
And of course, you can always pre-allocate Z to speed things up by using Z = zeros(A,D,C);.
You can do this in one line using the functions NUM2CELL to break the matrix X into a cell array and CELLFUN to operate across the cells:
Z = cellfun(#(x) x*Y,num2cell(X,[1 2]),'UniformOutput',false);
The result Z is a 1-by-C cell array where each cell contains an A-by-D matrix. If you want Z to be an A-by-D-by-C matrix, you can use the CAT function:
Z = cat(3,Z{:});
NOTE: My old solution used MAT2CELL instead of NUM2CELL, which wasn't as succinct:
[A,B,C] = size(X);
Z = cellfun(#(x) x*Y,mat2cell(X,A,B,ones(1,C)),'UniformOutput',false);
Here's a one-line solution (two if you want to split into 3rd dimension):
A = 2;
B = 3;
C = 4;
D = 5;
X = rand(A,B,C);
Y = rand(B,D);
%# calculate result in one big matrix
Z = reshape(reshape(permute(X, [2 1 3]), [A B*C]), [B A*C])' * Y;
%'# split into third dimension
Z = permute(reshape(Z',[D A C]),[2 1 3]);
Hence now: Z(:,:,i) contains the result of X(:,:,i) * Y
Explanation:
The above may look confusing, but the idea is simple.
First I start by take the third dimension of X and do a vertical concatenation along the first dim:
XX = cat(1, X(:,:,1), X(:,:,2), ..., X(:,:,C))
... the difficulty was that C is a variable, hence you can't generalize that expression using cat or vertcat. Next we multiply this by Y:
ZZ = XX * Y;
Finally I split it back into the third dimension:
Z(:,:,1) = ZZ(1:2, :);
Z(:,:,2) = ZZ(3:4, :);
Z(:,:,3) = ZZ(5:6, :);
Z(:,:,4) = ZZ(7:8, :);
So you can see it only requires one matrix multiplication, but you have to reshape the matrix before and after.
I'm approaching the exact same issue, with an eye for the most efficient method. There are roughly three approaches that i see around, short of using outside libraries (i.e., mtimesx):
Loop through slices of the 3D matrix
repmat-and-permute wizardry
cellfun multiplication
I recently compared all three methods to see which was quickest. My intuition was that (2) would be the winner. Here's the code:
% generate data
A = 20;
B = 30;
C = 40;
D = 50;
X = rand(A,B,C);
Y = rand(B,D);
% ------ Approach 1: Loop (via #Zaid)
tic
Z1 = zeros(A,D,C);
for m = 1:C
Z1(:,:,m) = X(:,:,m)*Y;
end
toc
% ------ Approach 2: Reshape+Permute (via #Amro)
tic
Z2 = reshape(reshape(permute(X, [2 1 3]), [A B*C]), [B A*C])' * Y;
Z2 = permute(reshape(Z2',[D A C]),[2 1 3]);
toc
% ------ Approach 3: cellfun (via #gnovice)
tic
Z3 = cellfun(#(x) x*Y,num2cell(X,[1 2]),'UniformOutput',false);
Z3 = cat(3,Z3{:});
toc
All three approaches produced the same output (phew!), but, surprisingly, the loop was the fastest:
Elapsed time is 0.000418 seconds.
Elapsed time is 0.000887 seconds.
Elapsed time is 0.001841 seconds.
Note that the times can vary quite a lot from one trial to another, and sometimes (2) comes out the slowest. These differences become more dramatic with larger data. But with much bigger data, (3) beats (2). The loop method is still best.
% pretty big data...
A = 200;
B = 300;
C = 400;
D = 500;
Elapsed time is 0.373831 seconds.
Elapsed time is 0.638041 seconds.
Elapsed time is 0.724581 seconds.
% even bigger....
A = 200;
B = 200;
C = 400;
D = 5000;
Elapsed time is 4.314076 seconds.
Elapsed time is 11.553289 seconds.
Elapsed time is 5.233725 seconds.
But the loop method can be slower than (2), if the looped dimension is much larger than the others.
A = 2;
B = 3;
C = 400000;
D = 5;
Elapsed time is 0.780933 seconds.
Elapsed time is 0.073189 seconds.
Elapsed time is 2.590697 seconds.
So (2) wins by a big factor, in this (maybe extreme) case. There may not be an approach that is optimal in all cases, but the loop is still pretty good, and best in many cases. It is also best in terms of readability. Loop away!
Nope. There are several ways, but it always comes out in a loop, direct or indirect.
Just to please my curiosity, why would you want that anyway ?
To answer the question, and for readability, please see:
ndmult, by ajuanpi (Juan Pablo Carbajal), 2013, GNU GPL
Input
2 arrays
dim
Example
nT = 100;
t = 2*pi*linspace (0,1,nT)’;
# 2 experiments measuring 3 signals at nT timestamps
signals = zeros(nT,3,2);
signals(:,:,1) = [sin(2*t) cos(2*t) sin(4*t).^2];
signals(:,:,2) = [sin(2*t+pi/4) cos(2*t+pi/4) sin(4*t+pi/6).^2];
sT(:,:,1) = signals(:,:,1)’;
sT(:,:,2) = signals(:,:,2)’;
G = ndmult (signals,sT,[1 2]);
Source
Original source. I added inline comments.
function M = ndmult (A,B,dim)
dA = dim(1);
dB = dim(2);
# reshape A into 2d
sA = size (A);
nA = length (sA);
perA = [1:(dA-1) (dA+1):(nA-1) nA dA](1:nA);
Ap = permute (A, perA);
Ap = reshape (Ap, prod (sA(perA(1:end-1))), sA(perA(end)));
# reshape B into 2d
sB = size (B);
nB = length (sB);
perB = [dB 1:(dB-1) (dB+1):(nB-1) nB](1:nB);
Bp = permute (B, perB);
Bp = reshape (Bp, sB(perB(1)), prod (sB(perB(2:end))));
# multiply
M = Ap * Bp;
# reshape back to original format
s = [sA(perA(1:end-1)) sB(perB(2:end))];
M = squeeze (reshape (M, s));
endfunction
I highly recommend you use the MMX toolbox of matlab. It can multiply n-dimensional matrices as fast as possible.
The advantages of MMX are:
It is easy to use.
Multiply n-dimensional matrices (actually it can multiply arrays of 2-D matrices)
It performs other matrix operations (transpose, Quadratic Multiply, Chol decomposition and more)
It uses C compiler and multi-thread computation for speed up.
For this problem, you just need to write this command:
C=mmx('mul',X,Y);
here is a benchmark for all possible methods. For more detail refer to this question.
1.6571 # FOR-loop
4.3110 # ARRAYFUN
3.3731 # NUM2CELL/FOR-loop/CELL2MAT
2.9820 # NUM2CELL/CELLFUN/CELL2MAT
0.0244 # Loop Unrolling
0.0221 # MMX toolbox <===================
I would like to share my answer to the problems of:
1) making the tensor product of two tensors (of any valence);
2) making the contraction of two tensors along any dimension.
Here are my subroutines for the first and second tasks:
1) tensor product:
function [C] = tensor(A,B)
C = squeeze( reshape( repmat(A(:), 1, numel(B)).*B(:).' , [size(A),size(B)] ) );
end
2) contraction:
Here A and B are the tensors to be contracted along the dimesions i and j respectively. The lengths of these dimensions should be equal, of course. There's no check for this (this would obscure the code) but apart from this it works well.
function [C] = tensorcontraction(A,B, i,j)
sa = size(A);
La = length(sa);
ia = 1:La;
ia(i) = [];
ia = [ia i];
sb = size(B);
Lb = length(sb);
ib = 1:Lb;
ib(j) = [];
ib = [j ib];
% making the i-th dimension the last in A
A1 = permute(A, ia);
% making the j-th dimension the first in B
B1 = permute(B, ib);
% making both A and B 2D-matrices to make use of the
% matrix multiplication along the second dimension of A
% and the first dimension of B
A2 = reshape(A1, [],sa(i));
B2 = reshape(B1, sb(j),[]);
% here's the implicit implication that sa(i) == sb(j),
% otherwise - crash
C2 = A2*B2;
% back to the original shape with the exception
% of dimensions along which we've just contracted
sa(i) = [];
sb(j) = [];
C = squeeze( reshape( C2, [sa,sb] ) );
end
Any critics?
I would think recursion, but that's the only other non- loop method you can do
You could "unroll" the loop, ie write out all the multiplications sequentially that would occur in the loop