How can I match on a specific value in Coq? - coq

I'm trying to implement a function that simply counts the number of occurrences of some nat in a bag (just a synonym for a list).
This is what I want to do, but it doesn't work:
Require Import Coq.Lists.List.
Import ListNotations.
Definition bag := list nat.
Fixpoint count (v:nat) (s:bag) : nat :=
match s with
| nil => O
| v :: t => S (count v t)
| _ :: t => count v t
end.
Coq says that the final clause is redundant, i.e., it just treats v as a name for the head instead of the specific v that is passed to the call of count. Is there any way to pattern match on values passed as function arguments? If not, how should I instead write the function?
I got this to work:
Fixpoint count (v:nat) (s:bag) : nat :=
match s with
| nil => O
| h :: t => if (beq_nat v h) then S (count v t) else count v t
end.
But I don't like it. I'd rather pattern match if possible.

Pattern matching is a different construction from equality, meant to discriminate data encoded in form of "inductives", as standard in functional programming.
In particular, pattern matching falls short in many cases, such as when you need potentially infinite patterns.
That being said, a more sensible type for count is the one available in the math-comp library:
count : forall T : Type, pred T -> seq T -> nat
Fixpoint count s := if s is x :: s' then a x + count s' else 0.
You can then build your function as count (pred1 x) where pred1 : forall T : eqType, T -> pred T , that is to say, the unary equality predicate for a fixed element of a type with decidable (computable) equality; pred1 x y <-> x = y.

I found in another exercise that it's OK to open up a match clause on the output of a function. In that case, it was "evenb" from "Basics". In this case, try "eqb".

Well, as v doesn't work in the match, I thought that maybe I could ask whether the head of the list was equal to v. And yes, it worked. This is the code:
Fixpoint count (v : nat) (s : bag) : nat :=
match s with
| nil => 0
| x :: t =>
match x =? v with
| true => S ( count v t )
| false => count v t
end
end.

Related

How to write boolean comparsion function in Coq

I'm trying to remove all integers that are greater than 7 from a list as follows
filter (fun n => n > 7).
However I get the following error
The term "n > 7" has type "Prop" while it is expected to have type "bool".
I am new to Coq, how can I fix it?
The problem is that #List.filter nat expects a function of type nat -> bool but you supplied a function of type nat -> Prop. Here, #List.filter nat is List.filter applied to the type argument nat. One difference between bool and Prop is that bool is decidable while Prop is not: there are propositions P such that neither P nor ~P are known; one can always determine whether something is true or false.
In order to resolve this situation, you need to write a function of type nat -> bool that returns true when applied to an argument greater than 7 and false otherwise. You can take advantage of the fact that the standard library defines boolean comparison functions over the natural numbers. I would also suggest reading the first volume of Software Foundations to familiarize yourself with Coq. It is more accessible and easy-going than some other prominent introductions (it was used in a program verification course at my university that presupposed little functional programming experience).
Here is a minimal example using only the builtin list type and notations:
Require Import Coq.Lists.List.
Import ListNotations.
Fixpoint filterb {A : Type} (f : A -> bool) (xs : list A) : list A :=
match xs with
| [] => []
| x :: xs => if f x then x :: filterb f xs else filterb f xs
end.
Fixpoint ltb (n m : nat) : bool :=
match n, m with
| n , 0 => false
| 0 , S m => true
| S n, S m => ltb n m
end.
Eval compute in (filterb (fun n => ltb 7 n) [5;6;7;8;9]).
(* = [8;9] *)

Retrieving constraints from GADT to ensure exhaustion of pattern matching in Coq

Let's define two helper types:
Inductive AB : Set := A | B.
Inductive XY : Set := X | Y.
Then two other types that depend on XY and AB
Inductive Wrapped : AB -> XY -> Set :=
| W : forall (ab : AB) (xy : XY), Wrapped ab xy
| WW : forall (ab : AB), Wrapped ab (match ab with A => X | B => Y end)
.
Inductive Wrapper : XY -> Set :=
WrapW : forall (xy : XY), Wrapped A xy -> Wrapper xy.
Note the WW constructor – it can only be value of types Wrapped A X and Wrapped B Y.
Now I would like to pattern match on Wrapper Y:
Definition test (wr : Wrapper Y): nat :=
match wr with
| WrapW Y w =>
match w with
| W A Y => 27
end
end.
but I get error
Error: Non exhaustive pattern-matching: no clause found for pattern WW _
Why does it happen? Wrapper forces contained Wrapped to be A version, the type signature forces Y and WW constructor forbids being A and Y simultaneously. I don't understand why this case is being even considered, while I am forced to check it which seems to be impossible.
How to workaround this situation?
Let's simplify:
Inductive MyTy : Set -> Type :=
MkMyTy : forall (A : Set), A -> MyTy A.
Definition extract (m : MyTy nat) : nat :=
match m with MkMyTy _ x => S x end.
This fails:
The term "x" has type "S" while it is expected to have type "nat".
wat.
This is because I said
Inductive MyTy : Set -> Type
This made the first argument to MyTy an index of MyTy, as opposed to a parameter. An inductive type with a parameter may look like this:
Inductive list (A : Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.
Parameters are named on the left of the :, and are not forall-d in the definition of each constructor. (They are still present in the constructors' types outside of the definition: cons : forall (A : Type), A -> list A -> list A.) If I make the Set a parameter of MyTy, then extract can be defined:
Inductive MyTy (A : Set) : Type :=
MkMyTy : A -> MyTy A.
Definition extract (m : MyTy nat) : nat :=
match m with MkMyTy _ x => S x end.
The reason for this is that, on the inside, a match ignores anything you know about the indices of the scrutinee from the outside. (Or, rather, the underlying match expression in Gallina ignores the indices. When you write a match in the source code, Coq tries to convert it into the primitive form while incorporating information from the indices, but it often fails.) The fact that m : MyTy nat in the first version of extract simply did not matter. Instead, the match gave me S : Set (the name was automatically chosen by Coq) and x : S, as per the constructor MkMyTy, with no mention of nat. Meanwhile, because MyTy has a parameter in the second version, I actually get x : nat. The _ is really a placeholder this time; it is mandatory to write it as _, because there's nothing to match, and you can Set Asymmetric Patterns to make it disappear.
The reason we distinguish between parameters and indices is because parameters have a lot of restrictions—most notably, if I is an inductive type with parameters, then the parameters must appear as variables in the return type of each constructor:
Inductive F (A : Set) : Set := MkF : list A -> F (list A).
(* ^--------^ BAD: must appear as F A *)
In your problem, we should make parameters where we can. E.g. the match wr with Wrap Y w => _ end bit is wrong, because the XY argument to Wrapper is an index, so the fact that wr : Wrapper Y is ignored; you would need to handle the Wrap X w case too. Coq hasn't gotten around to telling you that.
Inductive Wrapped (ab : AB) : XY -> Set :=
| W : forall (xy : XY), Wrapped ab xy
| WW : Wrapped ab (match ab with A => X | B => Y end).
Inductive Wrapper (xy : XY) : Set := WrapW : Wrapped A xy -> Wrapper xy.
And now your test compiles (almost):
Definition test (wr : Wrapper Y): nat :=
match wr with
| WrapW _ w => (* mandatory _ *)
match w with
| W _ Y => 27 (* mandatory _ *)
end
end.
because having the parameters gives Coq enough information for its match-elaboration to use information from Wrapped's index. If you issue Print test., you can see that there's a bit of hoop-jumping to pass information about the index Y through the primitive matchs which would otherwise ignore it. See the reference manual for more information.
The solution turned out to be simple but tricky:
Definition test (wr : Wrapper Y): nat.
refine (match wr with
| WrapW Y w =>
match w in Wrapped ab xy return ab = A -> xy = Y -> nat with
| W A Y => fun _ _ => 27
| _ => fun _ _ => _
end eq_refl eq_refl
end);
[ | |destruct a]; congruence.
Defined.
The issue was that Coq didn't infer some necessary invariants to realize that WW case is ridiculous. I had to explicitly give it a proof for it.
In this solution I changed match to return a function that takes two proofs and brings them to the context of our actual result:
ab is apparently A
xy is apparently Y
I have covered real cases ignoring these assumptions, and I deferred "bad" cases to be proven false later which turned to be trivial. I was forced to pass the eq_refls manually, but it worked and does not look that bad.

How does one do an else statement in Coq's functional programming language?

I am trying to count the # of occurrences of an element v in a natlist/bag in Coq. I tried:
Fixpoint count (v:nat) (s:bag) : nat :=
match s with
| nil => 0
| h :: tl => match h with
| v => 1 + (count v tl)
end
end.
however my proof doesn't work:
Example test_count1: count 1 [1;2;3;1;4;1] = 3.
Proof. simpl. reflexivity. Qed.
Why doesn't the first piece of code work? What is it doing when v isn't matched?
I also tried:
Fixpoint count (v:nat) (s:bag) : nat :=
match s with
| nil => 0
| h :: tl => match h with
| v => 1 + (count v tl)
| _ => count v tl
end
end.
but that also gives an error in Coq and I can't even run it.
Functional programming is sort of new to me so I don't know how to actually express this in Coq. I really just want to say if h matches v then do a +1 and recurse else only recurse (i.e. add zero I guess).
Is there a simple way to express this in Coq's functional programming language?
The reason that I ask is because it feels to me that the match thing is very similar to an if else statement in "normal" Python programming. So either I am missing the point of functional programming or something. That is the main issue I am concerned I guess, implicitly.
(this is similar to Daniel's answer, but I had already written most of it)
Your problem is that in this code:
match h with
| v => 1 + (count v tl)
end
matching with v binds a new variable v. To test if h is equal to v, you'll have to use some decision procedure for testing equality of natural numbers.
For example, you could use Nat.eqb, which takes two natural numbers and returns a bool indicating whether they're equal.
Require Import Nat.
Fixpoint count (v:nat) (s:bag) : nat :=
match s with
| nil => 0
| h :: tl => if (eqb h v) then (1 + count v t1) else (count v t1)
end.
Why can't we simply match on the term we want? Pattern matching always matches on constructors of the type. In this piece of code, the outer match statement matches with nil and h :: t1 (which is a notation for cons h t1 or something similar, depending on the precise definition of bag). In a match statement like
match n with
| 0 => (* something *)
| S n => (* something else *)
end.
we match on the constructors for nat: 0 and S _.
In your original code, you try to match on v, which isn't a constructor, so Coq simply binds a new variable and calls it v.
The match statement you tried to write actually just shadows the v variable with a new variable also called v which contains just a copy of h.
In order to test whether two natural numbers are equal, you can use Nat.eqb which returns a bool value which you can then match against:
Require Import Arith.
Fixpoint count (v:nat) (s:bag) : nat :=
match s with
| nil => 0
| h :: tl => match Nat.eqb v h with
| true => 1 + (count v tl)
| false => count v tl
end
end.
As it happens, for matching of bool values with true or false, Coq also provides syntactic sugar in the form of a functional if/else construct (which is much like the ternary ?: operator from C or C++ if you're familiar with either of those):
Require Import Arith.
Fixpoint count (v:nat) (s:bag) : nat :=
match s with
| nil => 0
| h :: tl => if Nat.eqb v h then
1 + (count v tl)
else
count v tl
end.
(Actually, it happens that if works with any inductive type with exactly two constructors: then the first constructor goes to the if branch and the second constructor goes to the else branch. However, the list type has nil as its first constructor and cons as its second constructor: so even though you could technically write an if statement taking in a list to test for emptiness or nonemptiness, it would end up reversed from the way you would probably expect it to work.)
In general, however, for a generic type there won't necessarily be a way to decide whether two members of that type are equal or not, as there was Nat.eqb in the case of nat. Therefore, if you wanted to write a generalization of count which could work for more general types, you would have to take in an argument specifying the equality decision procedure.

Counting number of different elements in a list in Coq

I'm trying to write a function that takes a list of natural numbers and returns as output the amount of different elements in it. For example, if I have the list [1,2,2,4,1], my function DifElem should output "3". I've tried many things, the closest I've gotten is this:
Fixpoint DifElem (l : list nat) : nat :=
match l with
| [] => 0
| m::tm =>
let n := listWidth tm in
if (~ In m tm) then S n else n
end.
My logic is this: if m is not in the tail of the list then add one to the counter. If it is, do not add to the counter, so I'll only be counting once: when it's the last time it appears. I get the error:
Error: The term "~ In m tm" has type "Prop"
which is not a (co-)inductive type.
In is part of Coq's list standard library Coq.Lists.List. It is defined there as:
Fixpoint In (a:A) (l:list A) : Prop :=
match l with
| [] => False
| b :: m => b = a \/ In a m
end.
I think I don't understand well enough how to use If then statements in definitions, Coq's documentation was not helpful enough.
I also tried this definition with nodup from the same library:
Definition Width (A : list nat ) := length (nodup ( A ) ).
In this case what I get as error is:
The term "A" has type "list nat" while it is expected to have
type "forall x y : ?A0, {x = y} + {x <> y}".
And I'm quiet confused as to what's going on here. I'd appreciate your help to solve this issue.
You seem to be confusing propositions (Prop) and booleans (bool). I'll try to explain in simple terms: a proposition is something you prove (according to Martin-Lof's interpretation it is a set of proofs), and a boolean is a datatype which can hold only 2 values (true / false). Booleans can be useful in computations, when there are only two possible outcomes and no addition information is not needed. You can find more on this topic in this answer by #Ptival or a thorough section on this in the Software Foundations book by B.C. Pierce et al. (see Propositions and Booleans section).
Actually, nodup is the way to go here, but Coq wants you to provide a way of deciding on equality of the elements of the input list. If you take a look at the definition of nodup:
Hypothesis decA: forall x y : A, {x = y} + {x <> y}.
Fixpoint nodup (l : list A) : list A :=
match l with
| [] => []
| x::xs => if in_dec decA x xs then nodup xs else x::(nodup xs)
end.
you'll notice a hypothesis decA, which becomes an additional argument to the nodup function, so you need to pass eq_nat_dec (decidable equality fot nats), for example, like this: nodup eq_nat_dec l.
So, here is a possible solution:
Require Import Coq.Arith.Arith.
Require Import Coq.Lists.List.
Import ListNotations.
Definition count_uniques (l : list nat) : nat :=
length (nodup eq_nat_dec l).
Eval compute in count_uniques [1; 2; 2; 4; 1].
(* = 3 : nat *)
Note: The nodup function works since Coq v8.5.
In addition to Anton's solution using the standard library I'd like to remark that mathcomp provides specially good support for this use case along with a quite complete theory on count and uniq. Your function becomes:
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq.
Definition count_uniques (T : eqType) (s : seq T) := size (undup s).
In fact, I think the count_uniques name is redundant, I'd prefer to directly use size (undup s) where needed.
Using sets:
Require Import MSets.
Require List. Import ListNotations.
Module NatSet := Make Nat_as_OT.
Definition no_dup l := List.fold_left (fun s x => NatSet.add x s) l NatSet.empty.
Definition count_uniques l := NatSet.cardinal (no_dup l).
Eval compute in count_uniques [1; 2; 2; 4; 1].

How do I check for convertibility in a tactic producing terms?

Suppose I have the following tactic to check if a term is the literal zero:
Ltac isZero x :=
match x with
| O => constr:true
| _ => constr:false
end.
Goal Set.
let isz := isZero O in pose isz.
(* adds true to the context *)
Now imagine that I want the tactic to accept a bit more; maybe any term that is convertible with zero. If this was a tactic acting on the goal, I would do
Ltac isZero x :=
match x with
| ?v => unify v 0; constr:true
| _ => constr:false
end.
but this fails for a tactic producing terms:
Error: Value is a term. Expected a tactic.
How can I check for convertibility in a tactic producing terms? In this specific example reducing x or computing it (let xx := eval compute in x) may work, but in more complex example the cost of computing could be prohibitive, especially as I would need to reduce the two terms of the comparison.
PS: For reference, the unsimplified issue is that I'm trying to efficiently lookup a key probably matching a value in an FMap built by sequences of calls to add, and the tactic looks like
Ltac find_key value :=
match fmap with
| add ?k value _ => constr:(Some k)
| add _ _ ?m => find_key value m
| _ => constr:None
end
With this implementation, if instead of value the map contains a term convertible to value but not syntactically equal to it, the tactic will incorrectly return None.
You can try to construct a term that triggers the conversion check; for instance:
Goal 2 + 2 = 4.
match goal with
| |- ?a = ?b =>
let e := constr:(eq_refl a : a = b) in
idtac "equal"
| |- _ => idtac "not equal"
end.
Normally, this prints "equal". However, if you replace 4 by, say, 3 in the goal above, the inner branch fails, printing "not equal".