Pessimistic locking mechanism with IReliableQueue in Azure Service Fabric - azure-service-fabric

I understand locking is scoped per transaction for IReliableQueue in Service Fabric. I have a requirement where once the data is read from the ReliableQueue within a transaction, I need to pass the data back to my client and preserve the lock on that data for a certain duration and if the processing fails in client, then write the data back to queue (preferably at the head so that it is picked first in next iteration).

Service Fabric doesn't support this. I recommend you look into using an external queuing mechanism for this. For example, Azure Service Bus Queues provides the functionality you describe.
You can use this package to receive SB messages within your services.

preserve the lock on that data for a certain duration
We made that once or twice too in other contexts with success using modifiable-lists and a document-field LockedUntillUtc (initialized to mininimum or null, or using a different reliable collection of locked keys (sorted on LockedUntillUtc?) - which best suites your needs?).
If you can't trust your clients to adhere to such a lock-request and write/un-lock-request contract, consider an ETag pattern - only returned on a successfull lock-request...

Related

How do I make sure that I process one message at a time at most?

I am wondering how to process one message at a time using Googles pub/sub functionality in Go. I am using the official library for this, https://pkg.go.dev/cloud.google.com/go/pubsub#section-readme. The event is being consumed by a service that runs with multiple instances, so any in memory locking mechanism will not work.
I realise that it's an anti-pattern to do this, so let me explain my use-case. Using mongoDB I store an array of objects as an embedded document for each entity. The event being published is modifying parts of this array and saves it. If I receive more than one event at a time and they start processing exactly at the same time, one of the saves will override the other. So I was thinking a solution for this is to make sure that only one message will be processed at a time, and it would be nice to use any built-in functionality in cloud pub/sub to do so. Otherwise I was thinking of implementing some locking mechanism in the DB but i'd like to avoid that.
Any help would be appreciated.
You can imagine 2 things:
You can use ordering key in PubSub. Like that, all the message in relation with the same object will be delivered in order and one by one.
You can use a PUSH subscription to PubSub, to push to Cloud Run or Cloud Functions. With Cloud Run, set the concurrency to 1 (it's by default with Cloud Functions gen1), and set the max instance to 1 also. Like that you can process only one message at a time, all the other message will be rejected (429 HTTP error code) and will be requeued to PubSub. The problem is that you can parallelize the processing as before with ordering key
A similar thing, and simpler to implement, is to use Cloud Tasks instead of PubSub. With Cloud Tasks you can set a rate limit on a queue, and set the maxConcurrentDispatches to 1 (and you haven't to do the same with Cloud Functions max instances or Cloud Run max instances and concurrency)

External processing using Kafka Streams

There are several questions regarding message enrichment using external data, and the recommendation is almost always the same: ingest external data using Kafka Connect and then join the records using state stores. Although it fits in most cases, there are several other use cases in which it does not, such as IP to location and user agent detection, to name a few.
Enriching a message with an IP-based location usually requires a lookup by a range of IPs, but currently, there is no built-in state store that provides such capability. For user agent analysis, if you rely on a third-party service, you have no choices other than performing external calls.
We spend some time thinking about it, and we came up with an idea of implementing a custom state store on top of a database that supports range queries, like Postgres. We could also abstract an external HTTP or GRPC service behind a state store, but we're not sure if it is the right way.
In that sense, what is the recommended approach when you cannot avoid querying an external service during the stream processing, but you still must guarantee fault tolerance? What happens when an error occurs while the state store is retrieving data (a request fails, for instance)? Do Kafka Streams retry processing the message?
Generally, KeyValueStore#range(fromKey, toKey) is supported by build-in stores. Thus, it would be good to understand how the range queries you try to do are done? Also note, that internally, everything is stored as byte[] arrasy and RocksDB (default storage engine) sorts data accordingly -- hence, you can actually implement quite sophisticated range queries if you start to reason about the byte layout, and pass in corresponding "prefix keys" into #range().
If you really need to call an external service, you have "two" options to not lose data: if an external calls fails, throw an exception and let the Kafka Streams die. This is obviously not a real option, however, if you swallow error from the external lookup you would "skip" the input message and it would be unprocessed. Kafka Streams cannot know that processing "failed" (it does not know what your code does) and will not "retry", but consider the message as completed (similar if you would filter it out).
Hence, to make it work, you would need to put all data you use to trigger the lookup into a state store if the external call fails, and retry later (ie, do a lookup into the store to find unprocessed data and retry). This retry can either be a "side task" when you process the next input message, of you schedule a punctuation, to implement the retry. Note, that this mechanism changes the order in which records are processed, what might or might not be ok for your use case.

Is it possible to combine REST and messaging for microservices?

We have the first version of an application based on a microservice architecture. We used REST for external and internal communication.
Now we want to switch to AP from CP (CAP theorem)* and use a message bus for communication between microservices.
There is a lot of information about how to create an event bus based on Kafka, RabbitMQ, etc.
But I can't find any best practices for a combination of REST and messaging.
For example, you create a car service and you need to add different car components. It would make more sense, for this purpose, to use REST with POST requests. On the other hand, a service for booking a car would be a good task for an event-based approach.
Do you have a similar approach when you have a different dictionary and business logic capabilities? How do you combine them? Just support both approaches separately? Or unify them in one approach?
* for the first version, we agreed to choose consistency and partition tolerance. But now availability becomes more important for us.
Bottom line up front: You're looking for Command Query Responsibility Segregation; which defines an architectural pattern for breaking up responsibilities from querying for data to asking for a process to be run. The short answer is you do not want to mix the two in either a query or a process in a blocking fashion. The rest of this answer will go into detail as to why, and the three different ways you can do what you're trying to do.
This answer is a short form of the experience I have with Microservices. My bona fides: I've created Microservices topologies from scratch (and nearly zero knowledge) and as they say hit every branch on the way down.
One of the benefits of starting from zero-knowledge is that the first topology I created used a mixture of intra-service synchronous and blocking (HTTP) communication (to retrieve data needed for an operation from the service that held it), and message queues + asynchronous events to run operations (for Commands).
I'll define both terms:
Commands: Telling a service to do something. For instance, "Run ETL Batch job". You expect there to be an output from this; but it is necessarily a process that you're not going to be able to reliably wait on. A command has side-effects. Something will change because of this action (If nothing happens and nothing changes, then you haven't done anything).
Query: Asking a service for data that it holds. This data may have been there because of a Command given, but asking for data should not have side effects. No Command operations should need to be run because of a Query received.
Anyway, back to the topology.
Level 1: Mixed HTTP and Events
For this first topology, we mixed Synchronous Queries with Asynchronous Events being emitted. This was... problematic.
Message Buses are by their nature observable. One setting in RabbitMQ, or an Event Source, and you can observe all events in the system. This has some good side-effects, in that when something happens in the process you can typically figure out what events led to that state (if you follow an event-driven paradigm + state machines).
HTTP Calls are not observable without inspecting network traffic or logging those requests (which itself has problems, so we're going to start with "not feasible" in normal operations). Therefore if you mix a message based process and HTTP calls, you're going to have holes where you can't tell what's going on. You'll have spots where due to a network error your HTTP call didn't return data, and your services didn't continue the process because of that. You'll also need to hook up Retry/Circuit Breaker patterns for your HTTP calls to ensure they at least try a few times, but then you have to differentiate between "Not up because it's down", and "Not up because it's momentarily busy".
In short, mixing the two methods for a Command Driven process is not very resilient.
Level 2: Events define RPC/Internal Request/Response for data; Queries are External
In step two of this maturity model, you separate out Commands and Queries. Commands should use an event driven system, and queries should happen through HTTP. If you need the results of a query for a Command, then you issue a message and use a Request/Response pattern over your message bus.
This has benefits and problems too.
Benefits-wise your entire Command is now observable, even as it hops through multiple services. You can also replay processes in the system by rerunning events, which can be useful in tracking down problems.
Problems-wise now some of your events look a lot like queries; and you're now recreating the beautiful HTTP and REST semantics available in HTTP for messages; and that's not terribly fun or useful. As an example, a 404 tells you there's no data in REST. For a message based event, you have to recreate those semantics (There's a good Youtube conference talk on the subject I can't find but a team tried to do just that with great pain).
However, your events are now asynchronous and non-blocking, and every service can be refactored to a state-machine that will respond to a given event. Some caveats are those events should contain all the data needed for the operation (which leads to messages growing over the course of a process).
Your queries can still use HTTP for external communication; but for internal command/processes, you'd use the message bus.
I don't recommend this approach either (though it's a step up from the first approach). I don't recommend it because of the impurity your events start to take on, and in a microservices system having contracts be the same throughout the system is important.
Level 3: Producers of Data emit data as events. Consumers Record data for their use.
The third step in the maturity model (and we were on our way to that paradigm when I departed from the project) is for services that produce data to issue events when that data is produced. That data is then jotted down by services listening for those events, and those services will use that (could be?) stale data to conduct their operations. External customers still use HTTP; but internally you emit events when new data is produced, and each service that cares about that data will store it to use when it needs to. This is the crux of Michael Bryzek's talk Designing Microservices Architecture the Right way. Michael Bryzek is the CTO of Flow.io, a white-label e-commerce company.
If you want a deeper answer along with other issues at play, I'll point you to my blog post on the subject.

Microservice data replication patterns

In a microservice architecture, we usually have two ways for 2 microservices to communicate. Let’s say service A needs to get information from service B. The first option is a remote call, usually synchronous over HTTPS, so service A query an API hosted by service B.
The second option is adopting an event-driven architecture, where the state of service B can be published and consumed by service A in an asynchronous way. Using this model, service A can update its own database with the information from the service B’s events and all queries are made locally in this database. This approach has the advantage of a better decoupling of microservices, from development until operations. But it comes with some disadvantages related to data replication.
The first one is the high consumption of disk space, since the same data can reside in the databases of the microservices that need it. But the second one is worst in my opinion: data can become stale if service B can’t process its subscription as fast as needed, or it can’t be available for service A at the same time it’s created at service B, given the eventual consistency of the model.
Let’s say we’re using Kafka as an event hub, and its topics are configured to use 7 days of data retention. Service A is kept in sync as service B publishes its state. After two weeks, a new service C is deployed and its database needs to be enriched with all information that service B holds. We can only get partial information from Kafka topics since the oldest events are gone. My question here is what are the patterns we can use to achieve this microservice’s database enrichment (besides asking service B to republish all its current state to the event hub).
There are 2 options:
You can enable log compaction for Kafka for an individual topic. That will keep the most recent value for a given key discarding old updates. This saves space and also holds more data than the normal mode for a given retention period
Assuming you take a backup of service B DB on a daily basis, on introduction of a new service C, you need to first create the initial state of C from the latest backup of B and then replay the Kafka topic events from the particular offset id that represents the data after the backup.
Your concern is right but at the same time Microservices approach is give and take. You get loose coupling at the cost of individual data base for each service. There is no right answer to microservices architecture and really depends on what you are trying to achieve.
According to CAP theorem you have to compromise between consistency and availability and in most cases we go with eventual consistency . If your service A is not consistent with B then it will eventually be and that's the trade off at the cost of availability.
Another thing regarding microservice is that you only keep the reference of data from other service and may be very limited actual data from other service but definitely not much. And that too only if replicating the data is making your service independent and autonomouse, if you can't achieve any of it even after replicating the data then there is no point. e.g. Your shipping service will have complete history of order transition , but your booking service only have the latest status of order (e.g. in transit , On board etc) . User goes to booking and you show the current status of the order. But if user click details you get all the order transition history from shipping microservice. Now at some point your shipping service goes down and your user comes to check the status you at-least have current order status even when you can't show the details because order status is replicated in the booking service.
Regarding new services joining the system at later stage , Event sourcing is the pattern that you use for these kind of scenarios. Its complex pattern but it will bring your newly added services to the state at which you want them to be. You basically save all your events in an event store and replay them to attain the current state of the system and pre-populate service C database with those events.

Synchronising transactions between database and Kafka producer

We have a micro-services architecture, with Kafka used as the communication mechanism between the services. Some of the services have their own databases. Say the user makes a call to Service A, which should result in a record (or set of records) being created in that service’s database. Additionally, this event should be reported to other services, as an item on a Kafka topic. What is the best way of ensuring that the database record(s) are only written if the Kafka topic is successfully updated (essentially creating a distributed transaction around the database update and the Kafka update)?
We are thinking of using spring-kafka (in a Spring Boot WebFlux service), and I can see that it has a KafkaTransactionManager, but from what I understand this is more about Kafka transactions themselves (ensuring consistency across the Kafka producers and consumers), rather than synchronising transactions across two systems (see here: “Kafka doesn't support XA and you have to deal with the possibility that the DB tx might commit while the Kafka tx rolls back.”). Additionally, I think this class relies on Spring’s transaction framework which, at least as far as I currently understand, is thread-bound, and won’t work if using a reactive approach (e.g. WebFlux) where different parts of an operation may execute on different threads. (We are using reactive-pg-client, so are manually handling transactions, rather than using Spring’s framework.)
Some options I can think of:
Don’t write the data to the database: only write it to Kafka. Then use a consumer (in Service A) to update the database. This seems like it might not be the most efficient, and will have problems in that the service which the user called cannot immediately see the database changes it should have just created.
Don’t write directly to Kafka: write to the database only, and use something like Debezium to report the change to Kafka. The problem here is that the changes are based on individual database records, whereas the business significant event to store in Kafka might involve a combination of data from multiple tables.
Write to the database first (if that fails, do nothing and just throw the exception). Then, when writing to Kafka, assume that the write might fail. Use the built-in auto-retry functionality to get it to keep trying for a while. If that eventually completely fails, try to write to a dead letter queue and create some sort of manual mechanism for admins to sort it out. And if writing to the DLQ fails (i.e. Kafka is completely down), just log it some other way (e.g. to the database), and again create some sort of manual mechanism for admins to sort it out.
Anyone got any thoughts or advice on the above, or able to correct any mistakes in my assumptions above?
Thanks in advance!
I'd suggest to use a slightly altered variant of approach 2.
Write into your database only, but in addition to the actual table writes, also write "events" into a special table within that same database; these event records would contain the aggregations you need. In the easiest way, you'd simply insert another entity e.g. mapped by JPA, which contains a JSON property with the aggregate payload. Of course this could be automated by some means of transaction listener / framework component.
Then use Debezium to capture the changes just from that table and stream them into Kafka. That way you have both: eventually consistent state in Kafka (the events in Kafka may trail behind or you might see a few events a second time after a restart, but eventually they'll reflect the database state) without the need for distributed transactions, and the business level event semantics you're after.
(Disclaimer: I'm the lead of Debezium; funnily enough I'm just in the process of writing a blog post discussing this approach in more detail)
Here are the posts
https://debezium.io/blog/2018/09/20/materializing-aggregate-views-with-hibernate-and-debezium/
https://debezium.io/blog/2019/02/19/reliable-microservices-data-exchange-with-the-outbox-pattern/
first of all, I have to say that I’m no Kafka, nor a Spring expert but I think that it’s more a conceptual challenge when writing to independent resources and the solution should be adaptable to your technology stack. Furthermore, I should say that this solution tries to solve the problem without an external component like Debezium, because in my opinion each additional component brings challenges in testing, maintaining and running an application which is often underestimated when choosing such an option. Also not every database can be used as a Debezium-source.
To make sure that we are talking about the same goals, let’s clarify the situation in an simplified airline example, where customers can buy tickets. After a successful order the customer will receive a message (mail, push-notification, …) that is sent by an external messaging system (the system we have to talk with).
In a traditional JMS world with an XA transaction between our database (where we store orders) and the JMS provider it would look like the following: The client sets the order to our app where we start a transaction. The app stores the order in its database. Then the message is sent to JMS and you can commit the transaction. Both operations participate at the transaction even when they’re talking to their own resources. As the XA transaction guarantees ACID we’re fine.
Let’s bring Kafka (or any other resource that is not able to participate at the XA transaction) in the game. As there is no coordinator that syncs both transactions anymore the main idea of the following is to split processing in two parts with a persistent state.
When you store the order in your database you can also store the message (with aggregated data) in the same database (e.g. as JSON in a CLOB-column) that you want to send to Kafka afterwards. Same resource – ACID guaranteed, everything fine so far. Now you need a mechanism that polls your “KafkaTasks”-Table for new tasks that should be send to a Kafka-Topic (e.g. with a timer service, maybe #Scheduled annotation can be used in Spring). After the message has been successfully sent to Kafka you can delete the task entry. This ensures that the message to Kafka is only sent when the order is also successfully stored in application database. Did we achieve the same guarantees as we have when using a XA transaction? Unfortunately, no, as there is still the chance that writing to Kafka works but the deletion of the task fails. In this case the retry-mechanism (you would need one as mentioned in your question) would reprocess the task an sends the message twice. If your business case is happy with this “at-least-once”-guarantee you’re done here with a imho semi-complex solution that could be easily implemented as framework functionality so not everyone has to bother with the details.
If you need “exactly-once” then you cannot store your state in the application database (in this case “deletion of a task” is the “state”) but instead you must store it in Kafka (assuming that you have ACID guarantees between two Kafka topics). An example: Let’s say you have 100 tasks in the table (IDs 1 to 100) and the task job processes the first 10. You write your Kafka messages to their topic and another message with the ID 10 to “your topic”. All in the same Kafka-transaction. In the next cycle you consume your topic (value is 10) and take this value to get the next 10 tasks (and delete the already processed tasks).
If there are easier (in-application) solutions with the same guarantees I’m looking forward to hear from you!
Sorry for the long answer but I hope it helps.
All the approach described above are the best way to approach the problem and are well defined pattern. You can explore these in the links provided below.
Pattern: Transactional outbox
Publish an event or message as part of a database transaction by saving it in an OUTBOX in the database.
http://microservices.io/patterns/data/transactional-outbox.html
Pattern: Polling publisher
Publish messages by polling the outbox in the database.
http://microservices.io/patterns/data/polling-publisher.html
Pattern: Transaction log tailing
Publish changes made to the database by tailing the transaction log.
http://microservices.io/patterns/data/transaction-log-tailing.html
Debezium is a valid answer but (as I've experienced) it can require some extra overhead of running an extra pod and making sure that pod doesn't fall over. This could just be me griping about a few back to back instances where pods OOM errored and didn't come back up, networking rule rollouts dropped some messages, WAL access to an aws aurora db started behaving oddly... It seems that everything that could have gone wrong, did. Not saying Debezium is bad, it's fantastically stable, but often for devs running it becomes a networking skill rather than a coding skill.
As a KISS solution using normal coding solutions that will work 99.99% of the time (and inform you of the .01%) would be:
Start Transaction
Sync save to DB
-> If fail, then bail out.
Async send message to kafka.
Block until the topic reports that it has received the
message.
-> if it times out or fails Abort Transaction.
-> if it succeeds Commit Transaction.
I'd suggest to use a new approach 2-phase message. In this new approach, much less codes are needed, and you don't need Debeziums any more.
https://betterprogramming.pub/an-alternative-to-outbox-pattern-7564562843ae
For this new approach, what you need to do is:
When writing your database, write an event record to an auxiliary table.
Submit a 2-phase message to DTM
Write a service to query whether an event is saved in the auxiliary table.
With the help of DTM SDK, you can accomplish the above 3 steps with 8 lines in Go, much less codes than other solutions.
msg := dtmcli.NewMsg(DtmServer, gid).
Add(busi.Busi+"/TransIn", &TransReq{Amount: 30})
err := msg.DoAndSubmitDB(busi.Busi+"/QueryPrepared", db, func(tx *sql.Tx) error {
return AdjustBalance(tx, busi.TransOutUID, -req.Amount)
})
app.GET(BusiAPI+"/QueryPrepared", dtmutil.WrapHandler2(func(c *gin.Context) interface{} {
return MustBarrierFromGin(c).QueryPrepared(db)
}))
Each of your origin options has its disadvantage:
The user cannot immediately see the database changes it have just created.
Debezium will capture the log of the database, which may be much larger than the events you wanted. Also deployment and maintenance of Debezium is not an easy job.
"built-in auto-retry functionality" is not cheap, it may require much codes or maintenance efforts.