I am learning LDD3. Chatper Interrupt Handling. And wanna double check my understanding, also have question about logic relationship of the statement
1.Although some devices can be controlled using nothing but their I/O regions(char driver is the example, right??),
2.most real devices are a bit more complicated than that. Devices have to deal with the external world, which often includes things such as spinning disks, moving tape, wires to distant places, and so on.(understood)
3.Much has to be done in a time frame that is different from, and far slower than, that of the processor.
4.Since it is almost always undesirable to have the processor wait on external events, there must be a way for a device to let the processor know when something has happened.
is the author trying to say because of both 3rd condition and 4th condition, then we use interrupt handler?? I always thought just 4th condition can lead to interrupt handling. Does 3rd condition really matter here??
Thanks
They are related. I would have phrased as "much can be done". A processor can go and handle a multitude of tasks when waiting for a response from some external device if that device is a spinning disk or I/O response or other mechanical thing.
If the device were much faster than the processor, then #4 wouldn't be an issue.
Related
Is there a way to create a custom DispatchQueue quality of service with its own custom "speed"? For example, I want a QoS that's twice as slow as .utility.
Ideas on how to solve it
Somehow telling the CPU/GPU that we want to run the task every X operation cycles? Not sure if that's directly possible with iOS.
This is a really bad hack which produces messy code and doesn't really solve the issue if 1 line of code runs for several seconds, but we can introduce a wait after every line of code.
In SpriteKit/SceneKit, it's possible to slow down time. Is there a way to utilize that somehow to slow down an arbitrary piece of code?
Blocking the thread every X seconds so that it slows down - not sure if possible without sacrificing app speed
There is no mechanism in iOS or any other Cocoa platform to control the "speed" (for any meaning of that word) of a work item. The only tool offered us is some control over scheduling. Once your work item is scheduled, it will get 100% (*) of the CPU core until it ends or is preempted. There is no way to be asked to be preempted more often (and it would be expensive to allow that, since context switches are expensive).
The way to manage how much work is done is to directly manage the work, not preemption. The best way is to split up the work into small pieces, and schedule them over time and combine them at the end. If your algorithm doesn't support that kind of input segmentation, then the algorithm's main "loop" needs to limit the number of iterations it performs (or the amount of time it spends iterating), and return at that point to be scheduled later.
If you don't control the algorithm code, and you cannot work with whoever does, and you cannot slice your data into smaller pieces, this may be an unsolvable problem.
(*) With the rise of "performance" cores and other such CPU advances, this isn't completely true, but for this question it's close enough.
Technically you cannot alter the speed on the QoS such as .background or .utility or any other Qos.
The way to handle this is to choose the right QoS based on the task you want to perform.
The higher the QoS is, the more resources the OS will spend on it and descends when you use a lower one.
I'm working on a wheeled-robot platform. My team is implementing some algorithms on MCU to
keep getting sensors reading (sonar array, IR array, motor encoders, IMU)
receive user command (via a serial port connected to a tablet)
control actuators (motors) to execute user commands.
keep sending sensor readings to the tablet for more complicated algorithms.
We currently implement everything inside a global while-loop, while I know most of the other use-cases do the very same things with a real-time operating system.
Please tell me the benefits and reasons to use a real-time os instead of a simple while-loop.
Thanks.
The RTOS will provide priority based preemption. If your code is off parsing a serial command and executing it, it can't respond to anything else until it returns to your beastly loop. An RTOS will provide the abstractions needed for an instant context switch based on an interrupt event. Otherwise the worst-case latency of an event response is going to be that of the longest possible excursion out of the main loop, and sometimes you really do need long-running processes. Such as, for example, to update an LCD panel or respond to USB device enumeration. Preemption permits you to go off and do these things safe in the knowledge that a 16-bit timer running at the CPU clock isn't going to roll over several times before it's done. While for simple control jobs a loop is sufficient, the problem starting with it is when you get into something like USB device enumeration it's no longer practical and will need a full rewrite. By starting with a preemptive framework like an RTOS provides, you have a lot more future flexibility. But there's definitely a bit more up-front work, and definitely a learning curve.
"Real Time" OS ensures your task periodicity. If you want to read sensors data precisely at every 100msec, simple while loop will not guarantee that. On other hand, RTOS can easily take care of that.
RTOS gives you predictibility. An operation will be executed at given time and it will not be missed.
RTOS gives you Semaphores/Mutex so that your memory will not be corrupted or multiple sources will not access buffers.
RTOS provides message queues which can be useful for communication between tasks.
Yes, you can implement all these features in While loop, but then that's the advantage! You get everything ready and tested.
If your while loop works (i.e. it fulfills the real-time requirements of your system), and it's robust, maintainable, and somewhat extensible, then there probably is no benefit to using a real-time operating system.
But if your while-loop can't fulfill the real-time requirements or is overly complex or over-extended (i.e., any change requires further tuning and tweaking to restore real-time performance), then you should consider another architecture.
An RTOS architecture is one popular next step beyond the super-loop. An RTOS is basically a tool for managing software complexity. It allows you to divide a complex set of software requirements into multiple threads of execution. When done properly, each individual thread has a relatively simple set of requirements and becomes easier to implement. And thread prioritization can make it easier to fulfill the real-time requirements of the application. These are basically the benefits of employing an RTOS.
An RTOS is not a panacea, however. An RTOS increases the overall system complexity and opens you up to new types of bugs (such as deadlocks). It requires knowledge and experience to design and implement an RTOS based program effectively. Consider alternatives such as Multi-Rate Main Loop Tasking or an event-based state machine architecture (such as QP). These alternatives might be simpler, easier to understand, or more compatible with your way of designing software.
There are a couple huge advantage that a RTOS multitasker has:
Very good I/O performance: an RTOS can set a waiting thread ready as soon as an I/O action that it requested has completed, so latency in handling reads/writes/whatever can be low. A looped, polled design cannot respond to I/O completions until it gets round to checking the I/O status, (either directly or my polling some volatile flag set by an interrupt-handler).
Indpendent functionality: The ease of implementing isolated subsystems for serial comms, actuators etc. may well be one for you, as suggested in the other answers. It's very reassuring to know that any extra delay in, say some serial exchange, will not adversely affect timing elsewhere. You need to wait a second? No problem: sleep(1000) and you're done - no effect on the other subsystems:) It's the difference between 'no, I cannot add a network server, it would change all the timing and I would have to retest everything' and 'sure, there's plenty of CPU free, I already have the code from another job and I just need another thread to run it'.
There ae other advanatges that help offset the added annoyance of having to program a preemptive multitasker with its critical sections, semaphores and condvars.
Obviously, if your hardware has multiple cores, the RTOS helps - it is designed to share out available CPU execution cycles just like any other resource, and adding cores means more cycles.
In the end, though, it's the I/O performance and functional isolation that's the big win.
Some of the suggestions in other answers may help, either instead of, or together with, an RTOS. When controlling multiple I/O hardware, eg. sensors and actuators, an event-driven state-machine is a very good idea indeed. I often implement that by queueing all events into one thread, (producer-consumer queue), that has sole access to the state data and implements the state-machine, so serializing actions.
Whether the advantages are worth the candle is between you and your requirements:)
RTOS is not instead of while loop - it is while loop + tools which organize your tasks. How do they organize your tasks? Assign priorities to them, decide how much time each one have for a job and/or at what time it should start/end. RTOS also layers your software, i.e harwdare related stuff, application tasks, etc. Aside of that gives you data structures, containers, ready to use interfaces to handle common tasks so you don't have to implement your own i.e allocate some memory for you, lock access for some resources and so on.
I came across this term, "power-fail interrupt" in wikipedia here
Since power-failure occurs instantly, what is the use of this interrupt? By the time the computer realizes it has encountered a power-failure, it'll be switched off! What's the point of it? Also this interrupt is given the highest priorityHave I misunderstood the term "power-fail"?
After a power failure, the computer can remain on life support using reserve power (such as a battery).
The article you quote talks specifically about the VAX architecture. The way the power-fail interrupt works there is as follows:
Once a power-failure interrupt has been posted, the processor has
approximately 4 milliseconds before power is shut down.
Thus the interrupt handler has four milliseconds to do its thing.
I have prior experience in writing both event and poll based embedded systems (for tiny MCU's with no preemptive OS).
In an event based system, tasks usually receives events (messages) on a queue and handles them in turn.
In a polled based system, tasks polls status with a certain interval and responds to change.
Which architecture do you prefer? Can both co-exist?
UPDATE: POINTS MADE
POLL BASED
- Tight coupling related to timing aspects (#Lundin)
* Can co-exist alongside event system using queues (#embedded.kyle)
* Fine for smaller programs (#Lundin)
EVENT BASED
+ More flexible system in the long run (#embedded.kyle)
- RTOS edition adds complexity (#Lundin)
* Small programs = state-machine controlled (#Lundin)
* Can be implemented using queues and a "super-loop" (inside controller/main) (#embedded.kyle)
* Only true "events" are hw interrupts ones (#Lundin)
RELATED QUESTIONS
* Looking for a comparison of different scheduling algorithms for a Finite State Machine (#embedded.kyle)
RELATED INFO
* "Prefer Using Active Objects Instead of Naked Threads" (#Miro)
http://www.drdobbs.com/parallel/prefer-using-active-objects-instead-of-n/225700095
* "Use Threads Correctly = Isolation + Asynchronous Messages" (#Miro)
http://www.drdobbs.com/parallel/use-threads-correctly-isolation-asynch/215900465
There is really no such thing as "event-driven" on a bare bone MCU platform, despite what the buzzword-spitters are trying to tell you. The only kind of true events you can receive are hardware interrupts.
Depending on the nature of the application and its real time requirements, interrupts may or may not be suitable. Generally, it is far easier to achieve deterministic real time with a polling system. However, systems relying solely on polling are very hard to maintain, because you get tight coupling between all timing aspects.
Suppose you try to start up a LCD, which is slow. Instead of polling some timer repeatedly while burning CPU cycles in an empty loop, you would perhaps decide to receive some data over a bus in the meantime. And then you want to print the data received on the LCD. Such a design has created a tight coupling between the LCD startup time and the serial bus, and another tight coupling between the serial bus and the printing of data. From an object-oriented point-of-view these things are not related to each other at all. If you were to speed up the serial bus at some point in the future, then suddenly you could encounter LCD printing bugs, because it has not finished starting up when you try to print on it.
In a small program, it is perfectly fine to use polling like in the above example. But if the program has potential of growing, polling will make it very complex and the tight coupling will ultimately lead to many strange and fatal bugs.
On the other hand, multi-threading and RTOS adds quite a lot of extra complexity which in turn can lead to bugs as well. Where to draw the line isn't simple to determine.
Out of personal experience I'd say that any program smaller than 20-30k LOC will not benefit from scheduling and multitasking, beyond simple state machines. If the program gets larger than that, I'd consider a multitasking RTOS.
Also, low-end MCUs (8- and 16-bitters) are far from suitable to run an OS. If you find that you need an OS to handle complexity on a 8- or 16-bit platform, you probably picked the wrong MCU to begin with. I'd be sceptical against any attempts to introduce an OS on anything smaller than a 32-bitter.
Actually, event-driven programming and threads can be combined and the resulting pattern is widely known as "active objects" or "actors".
Active objects (actors) are encapsulated, event-driven state machines, which communicate with one another asynchronously by posting events to each other. Active objects process all events in their own thread of execution (at least conceptually, if a cooperative scheduler is used), so they avoid by design most concurrency hazards.
Actors and active objects are all the rage (again) in the general-purpose computing (you can search for Erlang, Scala, Akka). Herb Sutter has written a couple of good articles that explain the "active object" pattern: "Prefer Using Active Objects Instead of Naked Threads" (http://www.drdobbs.com/parallel/prefer-using-active-objects-instead-of-n/225700095) and "Use Threads Correctly = Isolation + Asynchronous Messages" (http://www.drdobbs.com/parallel/use-threads-correctly-isolation-asynch/215900465)
Here is what Herb says in the first of these articles:
"Using raw threads directly is trouble for a number of reasons ...
Active objects dramatically improve our ability to reason about our thread's code and operation by giving us higher-level abstractions and idioms that raise the semantic level of our program and let us express our intent more directly. As with all good patterns, we also get better vocabulary to talk about our design. Note that active objects aren't a novelty: UML and various libraries have provided support for active classes"
So, all this is really not new. But what's perhaps less known, especially in the embedded systems community, is that active objects are not only fully applicable to the embedded systems, but they are actually a perfect match for embedded and they are lighter than a traditional RTOS.
I've been using the event-driven active objects for over a decade now and have created the QP family of active object frameworks for embedded systems (see http://www.state-machine.com/). I would never go back to the polling "superloop" or the raw RTOS.
I prefer whichever architecture is best suited to the application at hand.
Both can co-exist in a multilevel queue architecture. One queue works on a poll basis running in the main loop. While another, most likely tasked with higher priority events, works by using interrupt based preemption.
See my answer to this SO question for a more detailed explanation and comparison of the different scheduling algorithms.
I mean how and why are realtime OSes able to meet deadlines without ever missing them? Or is this just a myth (that they do not miss deadlines)? How are they different from any regular OS and what prevents a regular OS from being an RTOS?
Meeting deadlines is a function of the application you write. The RTOS simply provides facilities that help you with meeting deadlines. You could also program on "bare metal" (w/o a RTOS) in a big main loop and meet you deadlines.
Also keep in mind that unlike a more general purpose OS, an RTOS has a very limited set of tasks and processes running.
Some of the facilities an RTOS provide:
Priority-based Scheduler
System Clock interrupt routine
Deterministic behavior
Priority-based Scheduler
Most RTOS have between 32 and 256 possible priorities for individual tasks/processes. The scheduler will run the task with the highest priority. When a running task gives up the CPU, the next highest priority task runs, and so on...
The highest priority task in the system will have the CPU until:
it runs to completion (i.e. it voluntarily give up the CPU)
a higher priority task is made ready, in which case the original task is pre-empted by the new (higher priority) task.
As a developer, it is your job to assign the task priorities such that your deadlines will be met.
System Clock Interrupt routines
The RTOS will typically provide some sort of system clock (anywhere from 500 uS to 100ms) that allows you to perform time-sensitive operations.
If you have a 1ms system clock, and you need to do a task every 50ms, there is usually an API that allows you to say "In 50ms, wake me up". At that point, the task would be sleeping until the RTOS wakes it up.
Note that just being woken up does not insure you will run exactly at that time. It depends on the priority. If a task with a higher priority is currently running, you could be delayed.
Deterministic Behavior
The RTOS goes to great length to ensure that whether you have 10 tasks, or 100 tasks, it does not take any longer to switch context, determine what the next highest priority task is, etc...
In general, the RTOS operation tries to be O(1).
One of the prime areas for deterministic behavior in an RTOS is the interrupt handling. When an interrupt line is signaled, the RTOS immediately switches to the correct Interrupt Service Routine and handles the interrupt without delay (regardless of the priority of any task currently running).
Note that most hardware-specific ISRs would be written by the developers on the project. The RTOS might already provide ISRs for serial ports, system clock, maybe networking hardware but anything specialized (pacemaker signals, actuators, etc...) would not be part of the RTOS.
This is a gross generalization and as with everything else, there is a large variety of RTOS implementations. Some RTOS do things differently, but the description above should be applicable to a large portion of existing RTOSes.
In RTOSes the most critical parameters which should be taken care of are lower latencies and time determinism. Which it pleasantly does by following certain policies and tricks.
Whereas in GPOSes, along with acceptable latencies the critical parameters is high throughput. you cannot count on GPOS for time determinism.
RTOSes have tasks which are much lighter than processes/threads in GPOS.
It is not that they are able to meet deadlines, it is rather that they have deadlines fixed whereas in a regular OS there is no such deadline.
In a regular OS the task scheduler is not really strict. That is the processor will execute so many instructions per second, but it may occasionally not do so. For example a task might be pre-empted to allow a higher priority one to execute (and may be for longer time). In RTOS the processor will always execute the same number of tasks.
Additionally there is usually a time limit for tasks to completed after which a failure is reported. This does not happen in regular OS.
Obviously there is lot more detail to explain, but the above are two of the important design aspects that are used in RTOS.
Your RTOS is designed in such a way that it can guarantee timings for important events, like hardware interrupt handling and waking up sleeping processes exactly when they need to be.
This exact timing allows the programmer to be sure that his (say) pacemaker is going to output a pulse exactly when it needs to, not a few tens of milliseconds later because the OS was busy with another inefficient task.
It's usually a much simpler OS than a fully-fledged Linux or Windows, simply because it's easier to analyse and predict the behaviour of simple code. There is nothing stopping a fully-fledged OS like Linux being used in a RTOS environment, and it has RTOS extensions. Because of the complexity of the code base it will not be able to guarantee its timings down to as small-a scale as a smaller OS.
The RTOS scheduler is also more strict than a general purpose scheduler. It's important to know the scheduler isn't going to change your task priority because you've been running a long time and don't have any interactive users. Most OS would reduce internal the priority of this type of process to favour short-term interactive programs where the interface should not be seen to lag.
You might find it helpful to read the source of a typical RTOS. There are several open-source examples out there, and the following yielded links in a little bit of quick searching:
FreeRTOS
eCos
A commercial RTOS that is well documented, available in source code form, and easy to work with is µC/OS-II. It has a very permissive license for educational use, and (a mildly out of date version of) its source can be had bound into a book describing its theory of operation using the actual implementation as example code. The book is MicroC OS II: The Real Time Kernel by Jean Labrosse.
I have used µC/OS-II in several projects over the years, and can recommend it.
"Basically, you have to code each "task" in the RTOS such that they will terminate in a finite time."
This is actually correct. The RTOS will have a system tick defined by the architecture, say 10 millisec., with all tasks (threads) both designed and measured to complete within specific times. For example in processing real time audio data, where the audio sample rate is 48kHz, there is a known amount of time (in milliseconds) at which the prebuffer will become empty for any downstream task which is processing the data. Therefore using the RTOS requires correct sizing of the buffers, estimating and measuring how long this takes, and measuring the latencies between all software layers in the system. Then the deadlines can be met. Otherwise the applications will miss the deadlines. This requires analysis of the worst-case data processing throughout the entire stack, and once the worst-case is known, the system can be designed for, say, 95% processing time with 5% idle time (this processing may not ever occur in any real usage, because worst-case data processing may not be an allowed state within all layers at any single moment in time).
Example timing diagrams for the design of a real time operating system network app are in this article at EE Times,
PRODUCT HOW-TO: Improving real-time voice quality in a VoIP-based telephony design
http://www.eetimes.com/design/embedded/4007619/PRODUCT-HOW-TO-Improving-real-time-voice-quality-in-a-VoIP-based-telephony-design
I haven't used an RTOS, but I think this is how they work.
There's a difference between "hard real time" and "soft real time". You can write real-time applications on a non-RTOS like Windows, but they're 'soft' real-time:
As an application, I might have a thread or timer which I ask the O/S to run 10 times per second ... and maybe the O/S will do that, most of the time, but there's no guarantee that it will always be able to ... this lack of guarantee is why it's called 'soft'. The reason why the O/S might not be able to is that a different thread might be keeping the system busy doing something else. As an application, I can boost my thread priority to for example HIGH_PRIORITY_CLASS, but even if I do this the O/S still has no API which I can use to request a guarantee that I'll be run at certain times.
A 'hard' real-time O/S does (I imagine) have APIs which let me request guaranteed execution slices. The reason why the RTOS can make such guarantees is that it's willing to abend threads which take more time than expected / than they're allowed.
What is important is realtime applications, not realtime OS. Usually realtime applications are predictable: many tests, inspections, WCET analysis, proofs, ... have been performed which show that deadlines are met in any specified situations.
It happens that RTOSes help doing this work (building the application and verifying its RT constraints). But I've seen realtime applications running on standard Linux, relying more on hardware horsepower than on OS design.
... well ...
A real-time operating system tries to be deterministic and meet deadlines, but it all depends on the way you write your application. You can make a RTOS very non real-time if you don't know how to write "proper" code.
Even if you know how to write proper code:
It's more about trying to be deterministic than being fast.
When we talk about determinism it's
1) event determinism
For each set of inputs the next states and outputs of a system are known
2) temporal determinism
… also the response time for each set of outputs is known
This means that if you have asynchronous events like interrupts your system is strictly speaking not anymore temporal deterministic. (and most systems use interrupts)
If you really want to be deterministic poll everything.
... but maybe it's not necessary to be 100% deterministic
The textbook/interview answer is "deterministic pre-emption". The system is guaranteed to transfer control within a bounded period of time if a higher priority process is ready to run (in the ready queue) or an interrupt is asserted (typically input external to the CPU/MCU).
They actually don't guarantee meeting deadlines; what they do that makes them truly RTOS is to provide the means to recognize and deal with deadline overruns. 'Hard' RT systems generally are those where missing a deadline is disastrous and some kind of shutdown is required, whereas a 'soft' RT system is one where continuing with degraded functionality makes sense. Either way an RTOS permits you to define responses to such overruns. Non RT OS's don't even detect overruns.
Basically, you have to code each "task" in the RTOS such that they will terminate in a finite time.
Additionally your kernel would allocate specific amounts of time to each task, in an attempt to guarantee that certain things happened at certain times.
Note that this is not an easy task to do however. Imagine things like virtual function calls, in OO it's very difficult to determine these things. Also an RTOS must be carefully coded with regard to priority, it may require that a high priority task is given the CPU within x milliseconds, which may be difficult to do depending on how your scheduler works.