Does anyone have information on the ideal IOPS read and writes for Healthservice.exe(SCOM/MMA). We are dealing with a situation of high IOPS from healthservice.exe and appreciate any help
Thanks,
Sai
I think ideal is very YMMV, but if it is more than you are comfortable with, you may have too many rules or monitoring processes running. You can try restarting the service, as well as take a look at the link below for ideas.
https://social.technet.microsoft.com/Forums/systemcenter/en-US/bd2311f7-6b9d-4157-b7fd-ae67856fe52f/healthserviceexe-100-cpu?forum=operationsmanagergeneral
Related
Hi so I want to know what's the recommended cache or memory size for memcached? I'm running a drupal site on AwS Thanks!
This is a very subjective question as it depends on what you are caching and how big your data is. That you will have to figure out yourself.
After you do that you should know that on average you get a 60 to 70% utilization on memcache.
So if you are planning to cache around 6GB of data then its good to allocate 10GB to Memcache.
You can take a look here to see how memcache works. This will explain why it is not possible to fully utilize memcache
I have been browsing through a lot of websites. I need experts advice on this one.
can anyone please explain me what exactly is memcache ?
From what I understand that it is a distributed memory caching system used for dynamic web apps but my main question is do we need a database when we say 'memcache' or the term 'memcache' doesnt need a database ?
please answer. Thank you
No, you don't require a traditional database when you say memcache, it's an in memory hash table(dictionary) with key,value storage and so it resides in RAM as a lookup table.For this fact, it is not persistent, so whenever you restart your server, memcache gets reset.
memcached is a specific program that runs a server that other programs can use to keep things in memory. It's something like an in-memory database, depending on your definition of database.
Caching something in memory can also be done generically, without memcached (pronounced memcache dee).
In the past 4-5 hours there have been 10s of simple read queries that took 40-70 seconds to return result from the cloud SQL DB. Usually they take 50ms or so. Is there some ongoing issue? I can provide DB IDs and specific times if needed.
Thanks.
Between 11.00PST and 11.30PST there was an issue that interrupted many Cloud SQL instances. The problem should now be resolved.
We apologize for the inconvenience and thank you for your patience and continued support. Please rest assured that system reliability is a top priority for the Google Cloud Platform, and we are making continuous improvements to make our systems better.
To be kept informed of other Google Cloud SQL issues and launches, please join google-cloud-sql-announce#googlegroups.com
https://groups.google.com/forum/#!forum/google-cloud-sql-announce
(from Joe Faith in another thread)
This is a bit of an open ended question, but I'm looking for an open ended answer. I'm looking for a resource that can help explain how to benchmark different systems, but more importantly how to analyze the data and make intelligent choices based on the results.
In my specific case, I have a 4 server setup that includes mongo that serves as the backend for an iOS game. All servers are running Ubuntu 11.10. I've read numerous articles that make suggestions like "if CPU utilization is high, make this change." As a new-comer to backend architecture, I have no concept of what "high CPU utilization" is.
I am using Mongo's monitoring service (MMS), and I am gathering some information about it, but I don't know how to make choices or identify bottlenecks. Other servers serve requests from the game client to mongo and back, but I'm not quite sure how I should be benchmarking or logging important information from them. I'm also using Amazon's EC2 to host all of my instances, which also provides some information.
So, some questions:
What statistics are important to log on a backend setup? (CPU, RAM, etc)
What is a good way to monitor those statistics?
How do I analyze the statistics? (RAM usage is high/read requests are low, etc)
What tips should I know before trying to create a stress-test or benchmarking script for my architecture?
Again, if there is a resource that answers many of these questions, I don't need an explanation here, I was just unable to find one on my own.
If more details regarding my setup are helpful, I can provide those as well.
Thanks!
I like to think of performance testing as a mini-project that is undertaken because there is a real-world need. Start with the problem to be solved: is the concern that users will have a poor gaming experience if the response time is too slow? Or is the concern that too much money will be spent on unnecessary server hardware?
In short, what is driving the need for the performance testing? This exercise is sometimes called "establishing the problem to be solved." It is about the goal to be achieved-- because if there is not goal, why go through all the work of testing the performance? Establishing the problem to be solved will eventually drive what to measure and how to measure it.
After the problem is established, a next set is to write down what questions have to be answered to know when the goal is met. For example, if the goal is to ensure the response times are low enough to provide a good gaming experience, some questions that come to mind are:
What is the maximum response time before the gaming experience becomes unacceptably bad?
What is the maximum response time that is indistinguishable from zero? That is, if 200 ms response time feels the same to a user as a 1 ms response time, then the lower bound for response time is 200 ms.
What client hardware must be considered? For example, if the game only runs on iOS 5 devices, then testing an original iPhone is not necessary because the original iPhone cannot run iOS 5.
These are just a few question I came up with as examples. A full, thoughtful list might look a lot different.
After writing down the questions, the next step is decide what metrics will provide answers to the questions. You have probably comes across a lot metrics already: response time, transaction per second, RAM usage, CPU utilization, and so on.
After choosing some appropriate metrics, write some test scenarios. These are the plain English descriptions of the tests. For example, a test scenario might involve simulating a certain number of games simultaneously with specific devices or specific versions of iOS for a particular combination of game settings on a particular level of the game.
Once the scenarios are written, consider writing the test scripts for whatever tool is simulating the server work loads. Then run the scripts to establish a baseline for the selected metrics.
After a baseline is established, change parameters and chart the results. For example, if one of the selected metrics is CPU utilization versus the number of of TCP packets entering the server second, make a graph to find out how utilization changes as packets/second goes from 0 to 10,000.
In general, observe what happens to performance as the independent variables of the experiment are adjusted. Use this hard data to answer the questions created earlier in the process.
I did a Google search on "software performance testing methodology" and found a couple of good links:
Check out this white paper Performance Testing Methodology by Johann du Plessis
Have a look at the Methodology section of this Wikipedia article.
The reason I ask is that Stack Overflow has been Slashdotted, and Redditted.
First, what kinds of effect does this have on the servers that power a website? Second, what can be done by system administrators to ensure that their sites remain up and running as best as possible?
Unfortunately, if you haven't planned for this before it happens, it's probably too late and your users will have a poor experience.
Scalability is your first immediate concern. You may start getting more hits per second than you were getting per month. Your first line of defense is good programming and design. Make sure you're not doing anything stupid like reloading data from a database multiple times per request instead of caching it. Before the spike happens, you need to do some fairly realistic load tests to see where the bottlenecks are.
For absurdly high traffic, consider the ability to switch some dynamic pages over to static pages.
Having a server architecture that can scale also helps. Shared hosts generally don't scale. A single dedicated machine generally doesn't scale. Using something like Amazon's EC2 to host can help, especially if you plan for a cluster of servers from the beginning (even if your cluster is a single computer).
You're next major concern is security. You're suddenly a much bigger target for the bad guys. Make sure you have a good security plan in place. This is something you should always have, but it become more important with high usage.
Firstly, ask if you really want to spend weeks and thousands of $ on planning for something that might not even happen, and if it does happen, lasts about 5 hours.
Easiest solution is to have a good way to switch to a page simply allowing a signup. People will sign up and you can email them when the storm has passed.
More elaborate solutions rely on being able to scale quickly. That's firstly a software issue (can you connect to a db on another server, can you do load balancing). Secondly, your hosting solution needs to support fast expansion. Amazon EC2 comes to mind, or maybe slicehost. With both services you can easily start new instances ("Let's move the database to a different server") and expand your instances ("Let's upgrade the db server to 4GB RAM").
If you keep all data in the db (including sessions), you can easily have multiple front-end servers. For the database I'd usually try a single server with the highest resources available, but only because I haven't worked with db replication and it used to be quite hard to do, at least with mysql. Things might have improved.
The app designer needs to think about scaling up (larger machines with more cores and higher performance) and/or scaling out (distributing workload across multiple systems). The IT guy needs to work out how to best support that. The network is what you look at first, because obviously everything rides on top of it. Starting at the border, that usually means network load balancers and redundant routers being served by multiple providers. You can also look at geographic caching services and apps such as cachefly.
You want to reduce your bottlenecks as much as possible. You also want to design the environment such that it can be scaled out as needed without much work. Do the design work up front and it'll mean less headaches when you do get dugg.
Some ideas (of what I used in the past and current projects):
For boosting performance (if needed) you can put a reverse-proxying, caching squid in front of your server. Of course that only works if you don't have session keys and if the pages are somewhat static (means: they change only once an hour or so) and not personalised.
With the squid you can boost a bloated and slow CMS like typo3, thus having the performance of static websites with the comfort of a CMS.
You can outsource large files to external services like Amazon S3, saving your server's bandwidth.
And if you are able to spend some (three-figures per month) bucks, you can as well use a Content Delivery Network. Whith that in place you automatically have scaling, high-availability and low latencys for your users. Of course, your pages must be cachable, so session keys and personalised pages are a no-no. If designed carefully and with CDNs in mind, you can at least cache SOME content, like pics and videos and static stuff.
The load goes up, as other answers have mentioned.
You'll also get an influx of new users/blog comments/votes from bored folks who are only really interested in vandalism. This is mostly a problem for blogs which allow completely anonymous commenting, where some dreadful stuff will be entered. The blog platform might have spam filters sufficient to block it, but manual intervention is frequently required to clean up remaining drivel.
Even a little barrier to entry, like requiring a user name or email address even if no verification is done, will dramatically reduce the volume of the vandalism.