How to Remove header and footer from Dataframe? - pyspark

I am reading a text (not CSV) file that has header, content and footer using
spark.read.format("text").option("delimiter","|")...load(file)
I can access the header with df.first(). Is there something close to df.last() or df.reverse().first()?

Sample data:
col1|col2|col3
100|hello|asdf
300|hi|abc
200|bye|xyz
800|ciao|qwerty
This is the footer line
Processing logic:
#load text file
txt = sc.textFile("path_to_above_sample_data_text_file.txt")
#remove header
header = txt.first()
txt = txt.filter(lambda line: line != header)
#remove footer
txt = txt.map(lambda line: line.split("|"))\
.filter(lambda line: len(line)>1)
#convert to dataframe
df=txt.toDF(header.split("|"))
df.show()
Output is:
+----+-----+------+
|col1| col2| col3|
+----+-----+------+
| 100|hello| asdf|
| 300| hi| abc|
| 200| bye| xyz|
| 800| ciao|qwerty|
+----+-----+------+

Assuming the file is not so large we can use collect to get the dataframe as iterator and the access the last element as follows:
df = df.collect()[data.count()-1]
avoid using collect on large datasets.
or
we can use take to cut off the last row.
df = df.take(data.count()-1)

Assuming your text file has JSON header and Footer,
Spark SQL way,
Sample Data
{"":[{<field_name>:<field_value1>},{<field_name>:<field_value2>}]}
Here the header can be avoided by following 3 lines (Assumption No Tilda in data),
jsonToCsvDF=spark.read.format("com.databricks.spark.csv").option("delimiter", "~").load(<Blob Path1/ ADLS Path1>)
jsonToCsvDF.createOrReplaceTempView("json_to_csv")
spark.sql("SELECT SUBSTR(`_c0`,5,length(`_c0`)-5) FROM json_to_csv").coalesce(1).write.option("header",false).mode("overwrite").text(<Blob Path2/ ADLS Path2>)
Now the output will look like,
[{<field_name>:<field_value1>},{<field_name>:<field_value2>}]

In addition to above answer, below solution fits good for files with multiple header and footer lines :-
val data_delimiter = "|"
val skipHeaderLines = 5
val skipHeaderLines = 3
//-- Read file into Dataframe and convert to RDD
val dataframe = spark.read.option("wholeFile", true).option("delimiter",data_delimiter).csv(s"hdfs://$in_data_file")
val rdd = dataframe.rdd
//-- RDD without header and footer
val dfRdd = rdd.zipWithIndex().filter({case (line, index) => index != (cnt - skipFooterLines) && index > (skipHeaderLines - 1)}).map({case (line, index) => line})
//-- Dataframe without header and footer
val df = spark.createDataFrame(dfRdd, dataframe.schema)

Related

Parse the CSV data which is available in single row

I have below like data in dataframe. Note that - Contents is the only one column and this dataframe has only one record which has the data. In data, first row is header, lines are separated by LF.
How can I generate a new dataframe which will have 3 columns and corresponding data.
display(df)
Contents
============================
"DateNum","MonthNum","DayName"
"19910101","1","Tue"
"19910102","1","Wed"
"19910103","1","Thu"
Just for info, below is how the data looks
You can split by new line to get an RDD[String], which can then be converted to a dataframe:
val df2 = spark.read.option("header",true).csv(df.rdd.flatMap(_.getString(0).split("\n")).toDS)
df2.show
+--------+--------+-------+
| DateNum|MonthNum|DayName|
+--------+--------+-------+
|19910101| 1| Tue|
|19910102| 1| Wed|
|19910103| 1| Thu|
+--------+--------+-------+

Split file with Space where column data is also having space

Hi I have data file which is having space as delimiter and also the data each column also contain spaces..How can i split it using spark program using scala:
Sample data Filed:
student.txt
3 columns:
Name
Address
Id
Name Address Id
Abhi Rishii Bangalore,Karnataka 1234
Rinki siyty Hydrabad,Andra 2345
Output Data frame should be:
|Name |City |State |Id--|
+-------------+------+-----------+-----+
| Abhi Rishii|Bangalore|Karnataka|1234|
| Rinki siyty|Hydrabad |Andra |2345|
+----+-----+-----------+---------+-----+
Your file is a tab delimited file.
You can use Spark's csv reader to read this file directly into a dataframe.
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder().getOrCreate()
var studentDf = spark.read.format("csv") // Use "csv" for both TSV and CSV
.option("header", "true")
.option("delimiter", "\t") // Set delimiter to tab .
.load("student.txt")
.withColumn("_tmp", split($"Address", "\\,"))
.withColumn($"_tmp".getItem(0).as("City"))
.withColumn($"_tmp".getItem(1).as("State"))
.drop("_tmp")
.drop("Address")
studentDf .show()
|Name |City |State |Id--|
+-------------+------+-----------+-----+
| Abhi Rishii|Bangalore|Karnataka|1234|
| Rinki siyty|Hydrabad |Andra |2345|
+----+-----+-----------+---------+-----+

Format csv file with column creation in Spark scala

I have a csv file, as below
It has 6 rows with top row as header, while header read as "Students Marks"
dataframe is treating them as one columns, now i want to separate both columns with data. "student" and "marks" are separated by space.
df.show()
_______________
##Student Marks##
---------------
A 10;20;10;20
A 20;20;30;10
B 10;10;10;10
B 20;20;20;10
B 30;30;30;20
Now i want to transform this csv table into two columns, with student and Marks, Also for every student the marks with add up, something like below
Student | Marks
A | 30;40;40;30
B | 60;60;60;40
I have tried with below but it is throwing an error
df.withColumn("_tmp", split($"Students Marks","\\ ")).select($"_tmp".getItem(0).as("col1"),$"_tmp".getItem(1).as("col2")).drop("_tmp")
You can read the csv file with the delimiteryou want and calculate result as below
val df = spark.read
.option("header", true)
.option("delimiter", " ")
.csv("path to csv")
After You get the dataframe df
val resultDF = df.withColumn("split", split($"Marks", ";"))
.withColumn("a", $"split"(0))
.withColumn("b", $"split"(1))
.withColumn("c", $"split"(2))
.withColumn("d", $"split"(3))
.groupBy("Student")
.agg(concat_ws(";", array(
Seq(sum($"a"), sum($"b"), sum($"c"), sum($"d")): _*)
).as("Marks"))
resultDF.show(false)
Output:
+-------+-------------------+
|Student|Marks |
+-------+-------------------+
|B |60.0;60.0;60.0;40.0|
|A |30.0;40.0;40.0;30.0|
+-------+-------------------+
Three Ideas. The first one is to read the file, split it by space and then create the dataFrame:
val df = sqlContext.read
.format("csv")
.option("header", "true")
.option("delimiter", " ")
.load("your_file.csv")
The second one is to read the file to dataframe and split it:
df.withColumn("Student", split($"Students Marks"," ").getItem(0))
.withColumn("Marks", split($"Students Marks"," ").getItem(1))
.drop("Students Marks")
The last one is your solution. It should work, but when you use the select, you don't use $"_tmp", therefore, it should work without the .drop("_tmp")
df.withColumn("_tmp", split($"Students Marks"," "))
.select($"_tmp".getItem(0).as("Student"),$"_tmp".getItem(1).as("Marks"))

check data size spark dataframes

I have the following question :
Actually I am working with the following csv file:
""job"";""marital"""
""management"";""married"""
""technician"";""single"""
I loaded it into a spark dataframe as follows:
My aim is to check the length and type of each field in the dataframe following the set od rules below :
col type
job char10
marital char7
I started implementing the check of the length of each field but I am getting a compilation error :
val data = spark.read.option("inferSchema", "true").option("header", "true").csv("file:////home/user/Desktop/user/file.csv")
data.map(line => {
val fields = line.toString.split(";")
fields(0).size
fields(1).size
})
The expected output should be:
List(10,10)
As for the check of the types I don't have any idea about how to implement it as we are using dataframes. Any idea about a function verifying the data format ?
Thanks a lot in advance for your replies.
ata
I see you are trying to use Dataframe, But if there are multiple double quotes then you can read as a textFile and remove them and convert to Dataframe as below
import org.apache.spark.sql.functions._
import spark.implicits._
val raw = spark.read.textFile("path to file ")
.map(_.replaceAll("\"", ""))
val header = raw.first
val data = raw.filter(row => row != header)
.map { r => val x = r.split(";"); (x(0), x(1)) }
.toDF(header.split(";"): _ *)
You get with data.show(false)
+----------+-------+
|job |marital|
+----------+-------+
|management|married|
|technician|single |
+----------+-------+
To calculate the size you can use withColumn and length function and play around as you need.
data.withColumn("jobSize", length($"job"))
.withColumn("martialSize", length($"marital"))
.show(false)
Output:
+----------+-------+-------+-----------+
|job |marital|jobSize|martialSize|
+----------+-------+-------+-----------+
|management|married|10 |7 |
|technician|single |10 |6 |
+----------+-------+-------+-----------+
All the column type are String.
Hope this helps!
You are using a dataframe. So when you use the map method, you are processing Row in your lambda.
so line is a Row.
Row.toString will return a string representing the Row, so in your case 2 structfields typed as String.
If you want to use map and process your Row, you have to get the vlaue inside the fields manually. with getAsString and getAsString.
Usually when you use Dataframes, you have to work in column's logic as in SQL using select, where... or directly the SQL syntax.

creating dataframe by loading csv file using scala in spark

but csv file is added with extra double quotes which results all cloumns into single column
there are four columns,header and 2 rows
"""SlNo"",""Name"",""Age"",""contact"""
"1,""Priya"",78,""Phone"""
"2,""Jhon"",20,""mail"""
val df = sqlContext.read.format("com.databricks.spark.csv").option("header","true").option("delimiter",",").option("inferSchema","true").load ("bank.csv")
df: org.apache.spark.sql.DataFrame = ["SlNo","Name","Age","contact": string]
What you can do is read it using sparkContext and replace all " with empty and use zipWithIndex() to separate header and text data so that custom schema and row rdd data can be created. Finally just use the row rdd and schema in sqlContext's createDataFrame api
//reading text file, replacing and splitting and finally zipping with index
val rdd = sc.textFile("bank.csv").map(_.replaceAll("\"", "").split(",")).zipWithIndex()
//separating header to form schema
val header = rdd.filter(_._2 == 0).flatMap(_._1).collect()
val schema = StructType(header.map(StructField(_, StringType, true)))
//separating data to form row rdd
val rddData = rdd.filter(_._2 > 0).map(x => Row.fromSeq(x._1))
//creating the dataframe
sqlContext.createDataFrame(rddData, schema).show(false)
You should be getting
+----+-----+---+-------+
|SlNo|Name |Age|contact|
+----+-----+---+-------+
|1 |Priya|78 |Phone |
|2 |Jhon |20 |mail |
+----+-----+---+-------+
I hope the answer is helpful