Apache Flume-Kafka-Sink producer duplicated messages - apache-kafka

We've meet strange problem with flume-kafka-sink, kafka broker failed multiple times and producing duplicate messages(every 50 record are same), but the settings about producer.sinks.r.request.required.acks = 1, quota to kafka documentation "This option provides the lowest latency but the weakest durability guarantees (some data will be lost when a server fails)", It can't be produce duplicate data? Is that means the problem caused by flume or flume-kafka-sink?

Flume-Kafka-Sink produce messages batch by batch and will retry after some fail write. During some broker fail, some partition leaders can't reach. When a batch write happen, some parition will success, but some failed, when Flume-Kafka-Sink retry, the success part will be duplicated.

Related

Kafka docs Producer possible message loss

I'm currently learning more about the Kafka Producer. I am a bit puzzled by the following paragraph from the docs:
Messages written to the partition leader are not immediately readable
by consumers regardless of the producer’s acknowledgement settings.
When all in-sync replicas have acknowledged the write, then the
message is considered committed, which makes it available for reading.
This ensures that messages cannot be lost by a broker failure after
they have already been read. Note that this implies that messages
which were acknowledged by the leader only (that is, acks=1) can be
lost if the partition leader fails before the replicas have copied the
message. Nevertheless, this is often a reasonable compromise in
practice to ensure durability in most cases while not impacting
throughput too significantly.
The way I interpret this is that messages can get lost during the sync between leader and replicated brokers, i.e. messages won't be committed unless they have been successfully replicated.
I don't understand how (for example) the Java application can shield against this message loss.
Does it receive different acknowledgements between 'only-leader' and the full replication?
this is often a reasonable compromise in practice
How is that? Do they assume that you should log failed messages and re-queue them manually? Or how does that work?
"Does it receive different acknowledgements between 'only-leader' and the full replication?"
There is no difference between a leader and replica acknowledgment. You only steer the behavior of the producer through its configuration acks. If it is set to 1 it will wait only for the leader acknowledgment, if you set it to all it will wait for all replicas (based on the replication factor of the topic) before the producer considers writing the message as successful.
If you set acks=all and the synchronisation between leader and replicas fail, your producer will receive a retriable Exception (either "NotEnoughReplicasException" or "NotEnoughReplicasAfterAppendException", see more details here). Based on the producer configuration retries it will try to re-send the message. Kafka is built in a way that it expects crashed brokers to be available again (in a "short" amount of time).
In case you have set acks=1 and the synchronisation between leader and replicas fail, your producer considers the message was successfully written to the cluster and it will not try to reproduce the message. Of course the leader will continue to replicate the message to its replicas. But it is not really guaranteed that this will happen. And before the message got replicated the leader broker itself could have issues which will cause the message to be lost forever.

Kafka Producer guarantees

I'm using a Kafka Producer and my application sends individual ProducerRecords all with the same key into a single partition, and these ProducerRecords are then batched (using batch.size and linger.ms parameters) before being sent to the brokers. I have enable.idempotence=true and acks=all.
If one record in the middle of a batch fails to be written, for example if a host crashes or a network failure or disk failure occurs or the record failed to be acked by the minimum replicas, does Kafka guarantee that all subsequent records will also not be written? Or is there a possibility that a record in the middle of a batch could be missing?
If one record in the middle of a batch fails to be written, for example if a host crashes or a network failure or disk failure occurs or the record failed to be acked by the minimum replicas, does Kafka guarantee that all subsequent records will also not be written?
Yes, if any message within a batch fails, then all messages in the same batch fail. So none of the messages within the batch will be written to the broker's disk.
Or is there a possibility that a record in the middle of a batch could be missing?
No, either all or none messages of the batch are written to the broker.
This is achieved by the separation between the Producer client thread and a local buffer that queues and batches the data before sending it physically to the broker.
Since your records are all going to the same partition, you can safely assume all previous records will also be there.
Kafka guarantees ordering in a given partition, so if you are sending messages m1 and m2 (in order) to the partition, the batch and linger logic will not override the ordering. In other words, if you see the message m2 at your consumer, you can safely assume that m1 was delivered safely as well.

Difference between idempotence and exactly-once in Kafka Stream

I was going through document what I understood we can achieve exactly-once transaction with enabling idempotence=true
idempotence: The Idempotent producer enables exactly once for a
producer against a single topic. Basically each single message send
has stonger guarantees and will not be duplicated in case there's an
error
So if already we have idempotence then why we need another property exactly-once in Kafka Stream? What exactly different between idempotence vs exactly-once
Why exactly-once property not available in normal Kafka Producer?
In a distributed environment failure is a very common scenario that can be happened any time. In the Kafka environment, the broker can crash, network failure, failure in processing, failure while publishing message or failure to consume messages, etc.
These different scenarios introduced different kinds of data loss and duplication.
Failure scenarios
A(Ack Failed): Producer published message successfully with retry>1 but could not receive acknowledge due to failure. In that case, the Producer will retry the same message that might introduce duplicate.
B(Producer process failed in batch messages): Producer sending a batch of messages it failed with few published success. In that case and once the producer will restart it will again republish all messages from the batch which will introduce duplicate in Kafka.
C(Fire & Forget Failed) Producer published message with retry=0(fire and forget). In case of failure published will not aware and send the next message this will cause the message lost.
D(Consumer failed in batch message) A consumer receives a batch of messages from Kafka and manually commit their offset (enable.auto.commit=false). If consumers failed before committing to Kafka, next time Consumers will consume the same records again which reproduce duplicate on the consumer side.
Exactly-Once semantics
In this case, even if a producer tries to resend a message, it leads
to the message will be published and consumed by consumers exactly once.
To achieve Exactly-Once semantic in Kafka, it uses below 3 property
enable.idempotence=true (address a, b & c)
MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION=5(Producer will always have one in-flight request per connection)
isolation.level=read_committed (address d )
Enable Idempotent(enable.idempotence=true)
Idempotent delivery enables the producer to write a message to Kafka exactly
once to a particular partition of a topic during the lifetime of a
single producer without data loss and order per partition.
"Note that enabling idempotence requires MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION to be less than or equal to 5, RETRIES_CONFIG to be greater than 0 and ACKS_CONFIG be 'all'. If these values are not explicitly set by the user, suitable values will be chosen. If incompatible values are set, a ConfigException will be thrown"
To achieve idempotence Kafka uses a unique id which is called product id or PID and sequence number while producing messages. The producer keeps incrementing the sequence number on each message published which map with unique PID. The broker always compare the current sequence number with the previous one and it rejects if the new one is not +1 greater than the previous one which avoids duplication and same time if more than greater show lost in messages
In a failure scenario broker will compare the sequence numbers with the previous one and if the sequence not increased +1 will reject the message.
Transaction (isolation.level)
Transactions give us the ability to atomically update data in multiple topic partitions. All the records included in a transaction will be successfully saved, or none of them will be. It allows you to commit your consumer offsets in the same transaction along with the data you have processed, thereby allowing end-to-end exactly-once semantics.
The producer doesn't wait to write a message to Kafka whereas the Producer uses beginTransaction, commitTransaction, and abortTransaction(in case of failure)
Consumer uses isolation.level either read_committed or read_uncommitted
read_committed: Consumers will always read committed data only.
read_uncommitted: Read all messages in offset order without waiting
for transactions to be committed
If a consumer with isolation.level=read_committed reaches a control message for a transaction that has not completed, it will not deliver any more messages from this partition until the producer commits or aborts the transaction or a transaction timeout occurs. The transaction timeout is determined by the producer using the configuration transaction.timeout.ms(default 1 minute).
Exactly-Once in Producer & Consumer
In normal conditions where we have separate producers and consumers. The producer has to idempotent and same time manage transactions so consumers can use isolation.level to read-only read_committed to make the whole process as an atomic operation.
This makes a guarantee that the producer will always sync with the source system. Even producer crash or a transaction aborted, it always is consistent and publishes a message or batch of the message as a unit once.
The same consumer will either receive a message or batch of the message as a unit once.
In Exactly-Once semantic Producer along with Consumer will appear as
atomic operation which will operate as one unit. Either publish and
get consumed once at all or aborted.
Exactly Once in Kafka Stream
Kafka Stream consumes messages from topic A, process and publish a message to Topic B and once publish use commit(commit mostly run undercover) to flush all state store data to disk.
Exactly-once in Kafka Stream is a read-process-write pattern that guarantees that this operation will be treated as an atomic operation. Since Kafka Stream caters producer, consumer and transaction all together Kafka Stream comes special parameter processing.guarantee which could exactly_once or at_least_once which make life easy not to handle all parameters separately.
Kafka Streams atomically updates consumer offsets, local state stores,
state store changelog topics, and production to output topics all
together. If anyone of these steps fails, all of the changes are
rolled back.
processing.guarantee: exactly_once automatically provide below parameters you no need to set explicitly
isolation.level=read_committed
enable.idempotence=true
MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION=5
Kafka stream offers the exactly-once semantic from the end-to-end point of view (consumes from one topic, processes that message, then produces to another topic). However, you mentioned only the producer's idempotent attribute. That is only a small part of the full picture.
Let me rephrase the question:
Why do we need the exactly-once delivery semantic at the consumer side
while we already have guaranteed the exactly-once delivery semantic at the
producer side?
Answer: Since the exactly-once delivery semantic is not only at the producing step but the full flow of processing. To achieve the exactly-once delivery semantically, there are some conditions must be satisfied with the producing and consuming.
This is the generic scenario: Process A produces messages to the topic T. At the same time, process B tries to consume messages from the topic T. We want to make sure process B never processes one message twice.
Producer part: We must make sure that producers never produce a message twice. We can use Kafka Idempotent Producer
Consumer part:
Here is the basic workflow for the consumer:
Step 1: The consumer pulls the message M successfully from the Kafka's topic.
Step 2: The consumer tries to execute the job and the job returns successfully.
Step 3: The consumer commits the message's offset to the Kafka brokers.
The above steps are just a happy path. There are many issues arises in reality.
Scenario 1: The job on step 2 executes successfully but then the consumer is crashed. Since this unexpected circumstance, the consumer has not committed the message's offset yet. When the consumer restarts, the message will be consumed twice.
Scenario 2: While the consumer commits the offset at step 3, it crashes due to hardware failures (e.g: CPU, memory violation, ...) When restarting, the consumer no way to know it has committed the offset successfully or not.
Because there are many problems might be happened, the job's execution and the committing offset must be atomic to guarantee exactly-once delivery semantic at the consumer side. It doesn't mean we cannot but it takes a lot of effort to make sure the exactly-once delivery semantic. Kafka Stream upholds the work for engineers.
Noted that: Kafka Stream offers "exactly-once stream processing". It refers to consuming from a topic, materializing intermediate state in a Kafka topic and producing to one. If our application depends on some other external services (database, services...), we must make sure our external dependencies can guarantee exactly-once in those cases.
TL,DR: exactly-once for the full flow needs the cooperation between producers and consumers.
References:
Exactly-once semantics and how Apache Kafka does it
Transactions in Apache Kafka
Enabling exactly once Kafka streams

How to handle various failure conditions in Kafka

Issue we were facing:
In our system we were logging a ticket in database with status NEW and also putting it in the kafka queue for further processing. The processors pick those tickets from kafka queue, do processing and update the status accordingly. We found that some tickets are left in NEW state forever. So we were guessing whether tickets are failing to get produced in the queue or are no getting consumed.
Message loss / duplication scenarios (and some other related points):
So I started to dig exhaustively to know in what all ways we can face message loss and duplication in Kafka. Below I have listed all possible message loss and duplication scenarios that I can find in this post:
How data loss can occur in different approaches to handle all replicas down
Handle by waiting for leader to come online
Messages sent between all replica down and leader comes online are lost.
Handle by electing new broker as a leader once it comes online
If new broker is out of sync from previous leader, all data written between the
time where this broker went down and when it was elected the new leader will be
lost. As additional brokers come back up, they will see that they have committed
messages that do not exist on the new leader and drop those messages.
How data loss can occur when leader goes down, while other replicas may be up
In this case, the Kafka controller will detect the loss of the leader and elect a new leader from the pool of in sync replicas. This may take a few seconds and result in LeaderNotAvailable errors from the client. However, no data loss will occur as long as producers and consumers handle this possibility and retry appropriately.
When a consumer may miss to consume a message
If Kafka is configured to keep messages for a day and a consumer is down for a period of longer than a day, the consumer will lose messages.
Evaluating different approaches to consumer consistency
Message might not be processed when consumer is configured to receive each message at most once
Message might be duplicated / processed twice when consumer is configured to receive each message at least once
No message is processed multiple times or left unprocessed if consumer is configured to receive each message exactly once.
Kafka provides below guarantees as long as you are producing to one partition and consuming from one partition. All guarantees are off if you are reading from the same partition using two consumers or writing to the same partition using two producers.
Kafka makes the following guarantees about data consistency and availability:
Messages sent to a topic partition will be appended to the commit log in the order they are sent,
a single consumer instance will see messages in the order they appear in the log,
a message is ‘committed’ when all in sync replicas have applied it to their log, and
any committed message will not be lost, as long as at least one in sync replica is alive.
Approach I came up with:
After reading several articles, I felt I should do following:
If message is not enqueued, producer should resend
For this producer should listen for acknowledgement for each message sent. If no ackowledement is received, it can retry sending message
Producer should be async with callback:
As explained in last example here
How to avoid duplicates in case of producer retries sending
To avoid duplicates in queue, set enable.idempotence=true in producer configs. This will make producer ensure that exactly one copy of each message is sent. This requires following properties set on producer:
max.in.flight.requests.per.connection<=5
retries>0
acks=all (Obtain ack when all brokers has committed message)
Producer should be transactional
As explained here.
Set transactional id to unique id:
producerProps.put("transactional.id", "prod-1");
Because we've enabled idempotence, Kafka will use this transaction id as part of its algorithm to deduplicate any message this producer sends, ensuring idempotency.
Use transactions semantics: init, begin, commit, close
As explained here:
producer.initTransactions();
try {
producer.beginTransaction();
producer.send(record1);
producer.send(record2);
producer.commitTransaction();
} catch(ProducerFencedException e) {
producer.close();
} catch(KafkaException e) {
producer.abortTransaction();
}
Consumer should be transactional
consumerProps.put("isolation.level", "read_committed");
This ensures that consumer don't read any transactional messages before the transaction completes.
Manually commit offset in consumer
As explained here
Process record and save offsets atomically
Say by atomically saving both record processing output and offsets to any database. For this we need to set auto commit of database connection to false and manually commit after persisting both processing output and offset. This also requires setting enable.auto.commit to false.
Read initial offset (say to read after recovery from cache) from database
Seek consumer to this offset and then read from that position.
Doubts I have:
(Some doubts might be primary and can be resolved by implementing code. But I want words from experienced kafka developer.)
Does the consumer need to read the offset from database only for initial (/ first after consumer recovery) read or for all reads? I feel it needs to read offset from database only on restarts, as explained here
Do we have to opt for manual partitioning? Does this approach works only with auto partitioning off? I have this doubt because this example explains storing offset in MySQL by specifying partitions explicitly.
Do we need both: Producer side kafka transactions and consumer side database transactions (for storing offset and processing records atomically)? I feel for producer idempotence, we need producer to have unique transaction id and for that we need to use kafka transactional api (init, begin, commit). And as a counterpart, consumer also need to set isolation.level to read_committed. However can we ensure no message loss and duplicate processing without using kafka transactions? Or they are absolutely necessary?
Should we persist offset to external db as explained above and here
or send offset to transaction as explained here (also I didnt get what does it exactly mean by sending offset to transaction)
or follow sync async commit combo explained here.
I feel message loss / duplication scenarios 1 and 2 are handled by points 1 to 4 of approach I explained above.
I feel message loss / duplication scenario 3 is handled by point 6 of approach I explained above.
How do we implement different consumer consistency approaches as stated in message loss / duplication scenario 4? Is their any configuration or it needs to be implemented inside custom logic inside consumer?
Message loss / duplication scenario 5 says: "Kafka provides below guarantees as long as you are producing to one partition and consuming from one partition."? Is it something to concern about while building correct system?
Is any consideration unnecessary/redundant in the approach I came up with above? Also did I miss any necessary consideration? Did I miss any message loss / duplication scenarios?
Is their any other standard / recommended / preferable approach to ensure no message loss and duplicate processing than what I have thought above?
Do I have to actually code above approach using kafka APIs? or is there any high level API built atop kafka API which allows to easily ensure no message loss and duplicate processing?
Looking at issue we were facing (as stated at very beginning), we were thinking if we can recover any lost/unprocessed messages from files in which kafka stores messages. However that isnt correct, right?
(Extremely sorry for such an exhaustive post but wanted to write question which will ask all related question at one place allowing to build big picture of how to build system around kafka.)

What atomicity guarantees - if any - does Kafka have regarding batch writes?

We're now moving one of our services from pushing data through legacy communication tech to Apache Kafka.
The current logic is to send a message to IBM MQ and retry if errors occur. I want to repeat that, but I don't have any idea about what guarantees the broker provide in that scenario.
Let's say I send 100 messages in a batch via producer via Java client library. Assuming it reaches the cluster, is there a possibility only part of it be accepted (e.g. a disk is full, or some partitions I touch in my write are under-replicated)? Can I detect that problem from my producer and retry only those messages that weren't accepted?
I searched for kafka atomicity guarantee but came up empty, may be there's a well-known term for it
When you say you send 100 messages in one batch, you mean, you want to control this number of messages or be ok letting the producer batch a certain amount of messages and then send the batch ?
Because not sure you can control the number of produced messages in one producer batch, the API will queue them and batch them for you, but without guarantee of batch them all together ( I'll check that though).
If you're ok with letting the API batch a certain amount of messages for you, here is some clues about how they are acknowledged.
When dealing with producer, Kafka comes with some kind of reliability regarding writes ( also "batch writes")
As stated in this slideshare post :
https://www.slideshare.net/miguno/apache-kafka-08-basic-training-verisign (83)
The original list of messages is partitioned (randomly if the default partitioner is used) based on their destination partitions/topics, i.e. split into smaller batches.
Each post-split batch is sent to the respective leader broker/ISR (the individual send()’s happen sequentially), and each is acked by its respective leader broker according to request.required.acks
So regarding atomicity.. Not sure the whole batch will be seen as atomic regarding the above behavior. Maybe you can assure to send your batch of message using the same key for each message as they will go to the same partition, and thus maybe become atomic
If you need more clarity about acknowlegment rules when producing, here how it works As stated here https://docs.confluent.io/current/clients/producer.html :
You can control the durability of messages written to Kafka through the acks setting.
The default value of "1" requires an explicit acknowledgement from the partition leader that the write succeeded.
The strongest guarantee that Kafka provides is with "acks=all", which guarantees that not only did the partition leader accept the write, but it was successfully replicated to all of the in-sync replicas.
You can also look around producer enable.idempotence behavior if you aim having no duplicates while producing.
Yannick