I'm attempting to group the items in a collection by year/month/day. The grouping should be based on the pubDate and pubTimezoneOffset.
I've got an aggregate pipeline that:
- $project - adds the timezoneOffset to the pubDate
- $group - groups by the modified pubDate
- $project - removes the timezoneOffset
- $sort - sorts by pubDate
I tested each stage on it's own and it seems to be some issue with the second $project. In the final output the pubDate is null.
I've been going over it for a few hours now and can't see where I've gone wrong. What am I missing?
The aggregate pipeline:
db.messages.aggregate([
{
$project: {
_id: 1,
pubTimezoneOffset: 1,
pubDate: {
$add: [
'$pubDate', {
$add: [
{ $multiply: [ '$pubTimezoneOffset.hours', 60, 60, 1000 ] },
{ $multiply: [ '$pubTimezoneOffset.minutes', 60, 1000 ] }
]
}
]
}
}
},
{
$group: {
_id: {
year: { $year: '$pubDate' },
month: { $month: '$pubDate' },
day: { $dayOfMonth: '$pubDate' }
},
count: { $sum: 1 },
messages: {
$push: {
_id: '$_id',
pubTimezoneOffset: '$pubTimezoneOffset',
pubDate: '$pubDate'
}
}
}
},
{
$project: {
_id: 1,
messages: {
_id: 1,
pubTimezoneOffset: 1,
pubDate: {
$subtract: [
'$pubDate', {
$add: [
{ $multiply: [ '$pubTimezoneOffset.hours', 60, 60, 1000 ] },
{ $multiply: [ '$pubTimezoneOffset.minutes', 60, 1000 ] }
]
}
]
}
},
count: 1
}
},
{
$sort: {
'_id.year': -1,
'_id.month': -1,
'_id.day': -1
}
}
]).pretty();
To recreate the source data:
db.messages.insertOne({
pubDate: ISODate('2017-10-25T10:00:00:000Z'),
pubTimezoneOffset: {
hours: -7,
minutes: 0
}
});
db.messages.insertOne({
pubDate: ISODate('2017-10-25T11:00:00:000Z'),
pubTimezoneOffset: {
hours: -7,
minutes: 0
}
});
db.messages.insertOne({
pubDate: ISODate('2017-10-24: 10:00:00:000Z'),
pubTimezoneOffset: {
hours: -7,
minutes: 0
}
});
db.messages.insertOne({
pubDate: ISODate('2017-10-24: 11:00:00:000Z'),
pubTimezoneOffset: {
hours: -7,
minutes: 0
}
});
Running it in mongo shell outputs:
{
"_id" : {
"year" : 2017,
"month" : 10,
"day" : 25
},
"count" : 2,
"messages" : [
{
"_id" : ObjectId("59f0e8b47d0a206bdfde87b3"),
"pubTimezoneOffset" : {
"hours" : -7,
"minutes" : 0
},
"pubDate" : null
},
{
"_id" : ObjectId("59f0e8b47d0a206bdfde87b4"),
"pubTimezoneOffset" : {
"hours" : -7,
"minutes" : 0
},
"pubDate" : null
}
]
}
{
"_id" : {
"year" : 2017,
"month" : 10,
"day" : 23
},
"count" : 2,
"messages" : [
{
"_id" : ObjectId("59f0e8b47d0a206bdfde87b5"),
"pubTimezoneOffset" : {
"hours" : -7,
"minutes" : 0
},
"pubDate" : null
},
{
"_id" : ObjectId("59f0e8b47d0a206bdfde87b6"),
"pubTimezoneOffset" : {
"hours" : -7,
"minutes" : 0
},
"pubDate" : null
}
]
}
Kudos for the attempt but, you actually have quite a few things conceptually incorrect here, with the basic error you are seeing is because your premise of "array projection" is incorrect. You are trying to refer to variables "inside the array" by simply notating the "property name".
What you actually need to do here is apply $map in order to apply the functions to "transform" each element:
db.messages.aggregate([
{ "$project": {
"pubTimezoneOffset": 1,
"pubDate": {
"$add": [
"$pubDate",
{ "$add": [
{ "$multiply": [ '$pubTimezoneOffset.hours', 60 * 60 * 1000 ] },
{ "$multiply": [ '$pubTimezoneOffset.minutes', 60 * 1000 ] }
]}
]
}
}},
{ "$group": {
"_id": {
"year": { "$year": "$pubDate" },
"month": { "$month": "$pubDate" },
"day": { "$dayOfMonth": "$pubDate" }
},
"count": { "$sum": 1 },
"messages": {
"$push": {
"_id": "$_id",
"pubTimezoneOffset": "$pubTimezoneOffset",
"pubDate": "$pubDate"
}
}
}},
{ "$project": {
"messages": {
"$map": {
"input": "$messages",
"as": "m",
"in": {
"_id": "$$m._id",
"pubTimezoneOffset": "$$m.pubTimezoneOffset",
"pubDate": {
"$subtract": [
"$$m.pubDate",
{ "$add": [
{ "$multiply": [ "$$m.pubTimezoneOffset.hours", 60 * 60 * 1000 ] },
{ "$multiply": [ "$$m.pubTimezoneOffset.minutes", 60 * 1000 ] }
]}
]
}
}
}
},
"count": 1
}},
{ "$sort": { "_id": -1 } }
]).pretty();
Noting here that you are doing a lot of unnecessary work in "tranforming" the dates kept in the array, and then trying to "tranform" them back to the original state. Instead, you should have simply supplied a "variable" with $let to the _id of $group and left the original document state "as is" using $$ROOT instead of naming all the fields:
db.messages.aggregate([
{ "$group": {
"_id": {
"$let": {
"vars": {
"pubDate": {
"$add": [
"$pubDate",
{ "$add": [
{ "$multiply": [ '$pubTimezoneOffset.hours', 60 * 60 * 1000 ] },
{ "$multiply": [ '$pubTimezoneOffset.minutes', 60 * 1000 ] }
]}
]
}
},
"in": {
"year": { "$year": "$$pubDate" },
"month": { "$month": "$$pubDate" },
"day": { "$dayOfMonth": "$$pubDate" }
}
}
},
"docs": { "$push": "$$ROOT" }
}},
{ "$sort": { "_id": -1 } }
])
Also note that $sort simply does actually consider all the "sub-keys" anyway, so there is no need to name them explicitly.
Back to your error, the point of $map is essentially because whilst you can notate array "field inclusion" with MongoDB 3.2 and above like this:
"messages": {
"_id": 1,
"pubTimeZoneOffset": 1
}
The thing you cannot do is actually "calculate values" on the elements themselves. You tried "$pubDate" which actually looks in the "ROOT" space for a property of that name, which does not exist and is null. If you then tried:
"messages": {
"_id": 1,
"pubTimeZoneOffset": 1,
"pubDate": "$messages.pubDate"
}
Then you would get "a result", but not the result you might think. Because what would actually be included in "every element" is the value of that property in each array element as a "new array" itself.
So the short and sweet is use $map instead, which iterates the array elements with a local variable referring to the current element for you to notate values for in expressions.
MongoDB 3.6
MongoDB date operators are all timezone aware. So instead of all the juggling then all you need do is supply the additional "timezone" parameter to any option and the conversion will be done for you.
As a sample:
db.messages.aggregate([
{ "$group": {
"_id": {
"$dateToString": {
"date": "$pubDate",
"format": "%Y-%m-%d",
"timezone": {
"$concat": [
{ "$cond": {
"if": { "$gt": [ "$pubTimezoneOffset", 0 ] },
"then": "+",
"else": "-"
}},
{ "$let": {
"vars": {
"hours": { "$substr": [{ "$abs": "$pubTimezoneOffset.hours" },0,2] },
"minutes": { "$substr": [{ "$abs": "$pubTimezoneOffset.minutes" },0,2] }
},
"in": {
"$concat": [
{ "$cond": {
"if": { "$eq": [{ "$strLenCP": "$$hours" }, 1 ] },
"then": { "$concat": [ "0", "$$hours" ] },
"else": "$$hours"
}},
":",
{ "$cond": {
"if": { "$eq": [{ "$strLenCP": "$$minutes" }, 1 ] },
"then": { "$concat": [ "0", "$$minutes" ] },
"else": "$$minutes"
}}
]
}
}}
]
}
}
},
"docs": { "$push": "$$ROOT" }
}},
{ "$sort": { "_id": -1 } }
])
Note that most of the "juggling" in there is to convert your own "offset" to the "string" format required by the new operators. If you simply stored this as "offset": "-07:00" then you can instead simply write:
db.messages.aggregate([
{ "$group": {
"_id": {
"$dateToString": {
"date": "$pubDate",
"format": "%Y-%m-%d",
"timezone": "$offset"
}
},
"docs": { "$push": "$$ROOT" }
}},
{ "$sort": { "_id": -1 } }
])
Please Reconsider
I can't let this pass without making a note that your general approach here is conceptually incorrect. Storing "offset" or "local time string" within the database is just intrinsically wrong.
The date information should be stored as UTC and should be returned as UTC. Sure you can and "should" covert when aggregating, but the general premise is that you always convert back to UTC. And "conversion" comes from the "locale of the observer" and not a "stored" adjustment. Because dates are always relative to the "observer" point of view, and are not from the "point of origin" as you seem to have interpreted it.
I put some lengthy detail on this on Group by Date with Local Time Zone in MongoDB about why you store this way and why "locale" conversion from the "observer" is necessary. That also details "Daylight savings considerations" from the observer point of view.
The basic premise there still remains the same when MongoDB becomes "timezone aware" in that you :
Store in UTC
Query with local time converted to UTC
Aggregate converted from the "observer" offset
Convert the "offset" back to UTC
Because at the end of the day it's the "clients" job to supply that "locale" conversion, since that's the part that "knows where it is".
Related
I have a collection of two-dimensional timeseries data as follows:
[
{
"value" : 9,
"timestamp" : "2020-12-30T02:06:33.000+0000",
"recipeId" : 15
},
{
"value" : 2,
"timestamp" : "2020-12-30T12:04:23.000+0000",
"recipeId" : 102
},
{
"value" : 5,
"timestamp" : "2020-12-30T15:09:23.000+0000",
"recipeId" : 102
},
...
]
The records have a recipeId which is the first level of grouping I'm looking for. All values for a day of a recipe should be summed up. I want an array of timeseries per recipeId. I need the missing days to be filled with a 0. I want this construct to be created for a provided start and end date range.
Some like this for date range of 2020-12-29 to 2020-12-31:
[
[
{
"sum" : 0,
"timestamp" : "2020-12-29",
"recipeId" : 15
},
{
"sum" : 9,
"timestamp" : "2020-12-30",
"recipeId" : 15
},
{
"sum" : 0,
"timestamp" : "2020-12-31",
"recipeId" : 15
},
...
],
[
{
"sum" : 0,
"timestamp" : "2020-12-29",
"recipeId" : 0
},
{
"sum" : 7,
"timestamp" : "2020-12-30",
"recipeId" : 102
},
{
"sum" : 0,
"timestamp" : "2020-12-31",
"recipeId" : 102
},
...
]
]
This is what I currently have and it's only partially solving my requirements. I can't manage to get the last few stages right:
[
{
"$match": {
"timestamp": {
"$gte": "2020-12-29T00:00:00.000Z",
"$lte": "2020-12-31T00:00:00.000Z"
}
}
},
{
"$addFields": {
"timestamp": {
"$dateFromParts": {
"year": { "$year": "$timestamp" },
"month": { "$month": "$timestamp" },
"day": { "$dayOfMonth": "$timestamp" }
}
},
"dateRange": {
"$map": {
"input": {
"$range": [
0,
{
"$trunc": {
"$divide": [
{
"$subtract": [
"2020-12-31T00:00:00.000Z",
"2020-12-29T00:00:00.000Z"
]
},
1000
]
}
},
86400
]
},
"in": {
"$add": [
"2020-12-29T00:00:00.000Z",
{ "$multiply": ["$$this", 1000] }
]
}
}
}
}
},
{ "$unwind": "$dateRange" },
{
"$group": {
"_id": { "date": "$dateRange", "recipeId": "$recipeId" },
"count": {
"$sum": { "$cond": [{ "$eq": ["$dateRange", "$timestamp"] }, 1, 0] }
}
}
},
{
"$group": {
"_id": "$_id.date",
"total": { "$sum": "$count" },
"byRecipeId": {
"$push": {
"k": { "$toString": "$_id.recipeId" },
"v": { "$sum": "$count" }
}
}
}
},
{ "$sort": { "_id": 1 } },
{
"$project": {
"_id": 0,
"timestamp": "$_id",
"total": "$total",
"byRecipeId": {
"$arrayToObject": {
"$filter": { "input": "$byRecipeId", "cond": "$$this.v" }
}
}
}
}
]
which results in:
[
{
"timestamp": "2020-12-29T00:00:00.000Z",
"total": 21,
"byRecipeId": {}
},
{
"timestamp": "2020-12-30T00:00:00.000Z",
"total": 0,
"byRecipeId": {
"15": 9,
"102": 7
}
},
{
"timestamp": "2020-12-31T00:00:00.000Z",
"total": 0,
"byRecipeId": {}
}
]
I'm open to alternative solution of course. For examples I came across this post: https://medium.com/#alexandro.ramr777/fill-missing-values-using-mongodb-aggregation-framework-f011114e83e0 but it doesn't deal with multi-dimensions.
You could use the $redcue function. This code fills the gabs of Minutes for current day. Should be easy to adapt it to give missing Days.
{
$addFields: {
data: {
$reduce: {
input: { $range: [0, 24 * 60] },
initialValue: [],
in: {
$let: {
vars: {
ts: {
$add: [
moment().startOf('day').toDate(),
{ $multiply: ["$$this", 1000 * 60] }
]
}
},
in: {
$concatArrays: [
"$$value",
[{
$cond: {
if: { $in: ["$$ts", "$data.timestamp"] },
then: {
$first: {
$filter: {
input: "$data",
cond: { $eq: ["$$this.timestamp", "$$ts"] }
}
}
},
else: { timestamp: "$$ts", total: 0 }
}
}]
]
}
}
}
}
}
}
}
In my opinion, $reduce is more elegant than $map, however based on my experience the performance is much worse with $reduce.
We have Data:
[
{
"_id": ObjectId("5f87e152219aaf1f9404ef3f"),
"parameterId": "5f914ca2679bae721d38410b",
"average": 574998.153846154,
"count": 26.0,
"date": ISODate("2020-09-08T18:30:00.000Z"),
"_class": "org.nec.iotplatform.entities.RawData"
},
{
"_id": ObjectId("5f87e1e2219aaf1f9404eff5"),
"parameterId": "5f914ca2679bae721d38410b",
"average": 494217.606225681,
"count": 1285.0,
"date": ISODate("2020-09-09T18:30:00.000Z"),
"_class": "org.nec.iotplatform.entities.RawData"
}
]
I have query which I am executing on above data and then getting the result as below the query
db.collection.aggregate([
{
"$project": {
"year": {
"$year": "$date"
},
"month": {
"$month": "$date"
},
"dayOfMonth": {
"$dayOfMonth": "$date"
},
"average": "$average",
"count": "$count",
"Symbol": 1
}
},
{
"$group": {
"_id": {
year: "$year",
month: "$month",
dayOfMonth: "$dayOfMonth"
},
"data": {
"$push": "$$ROOT"
}
}
},
{
"$project": {
"average": {
"$divide": [
{
"$reduce": {
"input": "$data",
"initialValue": 0,
"in": {
"$add": [
"$$value",
{
"$multiply": [
"$$this.count",
"$$this.average"
]
}
]
}
}
},
{
$reduce: {
input: "$data",
initialValue: 0,
in: {
"$add": [
"$$value",
"$$this.count"
]
}
}
}
]
}
}
}
])
I am getting output :
[{
"_id" : {
"year" : 2020,
"month" : 9,
"dayOfMonth" : 8
},
"average" : 574998.153846154
},
{
"_id" : {
"year" : 2020,
"month" : 9,
"dayOfMonth" : 9
},
"average" : 494217.606225681
}]
But I need to format the result data like this. by adding the date like this:
{
2020-09-08T18:30:00.000Z : 574998.153846154,
2020-09-09T18:30:00.000Z : 494217.606225681
}
Thanks in advance.
You can use $dateFromString to create the date you want.
Also, you need $concat and $toString to parse the numbers to string and concat into a single string.
After that, using $group you can get the all values you need in the same array. And how you want set the date as KEY, is neccesary create fields k and v and parse again to string.
With the values together, using $arrayToObject you can cerate the schema you want date: average and use $replaceRoot to get only the values at top level.
To do this you need to add this query at the end of your aggregation.
{
"$set": {
"date": { "$dateFromString": { "dateString": {
"$concat": [
{ "$toString": "$_id.dayOfMonth" }, "-",
{ "$toString": "$_id.month" }, "-",
{ "$toString": "$_id.year" }
] },
"format": "%d-%m-%Y", "timezone": "Europe/Madrid"
} } }
},
{
"$group": {
"_id": null,
"date": { "$push": { "k": { "$toString": "$date" }, "v": "$average" } }
}
},
{
"$replaceRoot": { "newRoot": { "$arrayToObject": "$date" } }
}
This query add a new field called date like this:
"date": ISODate("2020-09-08T04:00:00Z")
I've used Europe/Madrid as timezone but you can choose you want to get your desired date.
Example here.
The output is:
{
"2020-09-07T22:00:00.000Z": 574998.153846154,
"2020-09-08T22:00:00.000Z": 494217.606225681
}
Using America/New_York as timezone:
{
"2020-09-08T04:00:00.000Z": 574998.153846154,
"2020-09-09T04:00:00.000Z": 494217.606225681
}
I am currently trying to create an aggregation pipeline in MongoDB to group the items into incremental time intervals, but I only succeeded in grouping them in disjoint time intervals so far.
Sample data:
{
"eventID": "abc",
"date": ISODate("2020-11-05T12:05:11.790Z"),
...........
},
{
"eventID": "xyz",
"date": ISODate("2020-11-05T12:12:11.790Z"),
...........
},
{
"eventID": "klm",
"date": ISODate("2020-11-05T12:28:11.790Z"),
...........
}
Current solution:
$group: {
"_id": {
"year": { $year: "$date" },
"dayOfYear": { $dayOfYear: "$date" },
"hour": { $hour: "$date" },
"interval": {
"$subtract": [
{ "$minute": "$date" },
{ "$mod": [{ "$minute": "$date"}, 10 ] }
]
}
},
"grouped_data": { "$push": { "eventID": "$eventID", "date": "$date" },
"count": { $sum: 1 } }
}
Which returns the data grouped in 10 minutes intervals but those are disjoint intervals (time windows of 10minutes that do not intersect).
Eg:
{
"_id": {
"year": 2020,
"dayOfYear": "314",
"hour": 12,
"interval": 0, // = interval beginning at minute 0 of 12th hour of the day
},
"grouped_data": [{ "eventID": "abc", "date": ISODate("2020-11-05T12:05:11.790Z" }],
"count": 1
},
{
"_id": {
"year": 2020,
"dayOfYear": "314",
"hour": 12,
"interval": 10, // = beginning at minute 10
},
"grouped_data": [{ "eventID": "xyz", "date": ISODate("2020-11-05T12:12:11.790Z") }],
"count": 1
},
{
"_id": {
"year": 2020,
"dayOfYear": "314",
"hour": 12,
"interval": 20, // = beginning at minute 20
},
"grouped_data": [{ "eventID": "klm", "date": ISODate("2020-11-05T12:28:11.790Z") }],
"count": 1
}
What I am actually looking for is grouping them in 10 minutes(or whatever is needed) incremental intervals. Eg: 0-9, 1-10, 2-11, etc. instead of 0-9, 10-19, 20-29 etc.
Edit:
The end goal here is to check if a count threshold is surpassed on a interval length defined by the user.
If user asks "Are there more than 2 events on a 10minute time window?", based on the sample data above and my current solution, the condition is not met. (1 event in 0-9 interval, and 1 event in 10-19). With incremental intervals I should be able to find that there are indeed 2 events in 10 minutes, but in the time interval 5-14. Eg:
{
"_id": {
*whatever logic for grouping in 10minutes window*
},
"grouped_data": [
{ "eventID": "abc", "date": ISODate("2020-11-05T12:05:11.790Z") },
{ "eventID": "xyz", "date": ISODate("2020-11-05T12:12:11.790Z") }],
"count": 2
},
{
"_id": {
*whatever logic for grouping in 10minutes window*
},
"grouped_data": [
{ "eventID": "klm", "date": ISODate("2020-11-05T12:28:11.790Z") }]
"count": 1
},
For me it is not clear which output you like to get, but this aggregation pipeline makes the sliding-window group:
db.collection.aggregate([
{
$group: {
_id: null,
data: { $push: "$$ROOT" },
min_date: { $min: "$date" },
max_date: { $max: "$date" }
}
},
{
$addFields: {
interval: {
$range: [
{ $toInt: { $divide: [{ $toLong: "$min_date" }, 1000] } },
{ $toInt: { $divide: [{ $toLong: "$max_date" }, 1000] } },
10 * 60]
}
}
},
{
$set: {
interval: {
$map: {
input: "$interval",
in: { $toDate: { $multiply: ["$$this", 1000] } }
}
}
}
},
{ $unwind: "$interval" },
{
$project: {
grouped_data: {
$filter: {
input: "$data",
cond: {
$and: [
{ $gte: ["$$this.date", "$interval"] },
{ $lt: ["$$this.date", { $add: ["$interval", 1000 * 60 * 10] }] },
]
}
}
},
interval: 1
}
}
])
Boundaries are given by input data, however can also use fixes dates:
db.collection.aggregate([
{ $group: { _id: null, data: { $push: "$$ROOT" } } },
{
$addFields: {
interval: {
$range: [
{ $toInt: { $divide: [{ $toLong: ISODate("2020-01-01T00:00:00Z") }, 1000] } },
{ $toInt: { $divide: [{ $toLong: ISODate("2020-12-31T23:59:59Z") }, 1000] } },
10 * 60]
}
}
},
{
$set: {
interval: {
$map: {
input: "$interval",
in: { $toDate: { $multiply: ["$$this", 1000] } }
}
}
}
},
{ $unwind: "$interval" },
{
$project: {
grouped_data: {
$filter: {
input: "$data",
cond: {
$and: [
{ $gte: ["$$this.date", "$interval"] },
{ $lt: ["$$this.date", { $add: ["$interval", 1000 * 60 * 10] }] },
]
}
}
},
interval: 1
}
}
])
I will try to answer my own question, maybe it will help other people on the internet. The solution I came up with is based on the answer of #Wernfried (thanks!).
db.getCollection("events_en").aggregate([
{
$match: { eventID: "XYZ" }
},
{
$group: {
_id: null,
events: { $push: "$$ROOT" },
limit: { $push: { $toDate: { $add: [{ $toLong: "$date" }, 1000 * 60 * 10] } } }
}
},
{ $unwind: "$limit" },
{
$project: {
events: {
$filter: {
input: "$events",
cond: {
$and: [
{ $lt: ["$$this.date", "$limit"] },
{ $gte: ["$$this.date", { $subtract: ["$limit", 1000 * 60 * 10] }] },
]
}
}
},
limit: 1,
}
},
{
$addFields: {
count: {
$size: "$events"
}
}
}
])
This will create a limit for each event, based on its date + 10 minutes (or whatever). And afterwards it filters the events (which are now duplicated for each of the limit using $unwind: "$limit"), based on that limit. The result is something like this:
{
"_id" : null,
"limit" : ISODate("2020-11-05T12:28:27.000+0000"),
"events" : [
{
"_id" : 13,
"eventID" : "XYZ",
"date" : ISODate("2020-11-05T12:18:27.000+0000")
},
{
"_id" : 63,
"eventID" : "XYZ",
"date" : ISODate("2020-11-05T12:19:55.000+0000")
},
............................
{
"_id" : 90,
"eventID" : "XYZ",
"date" : ISODate("2020-11-05T12:27:57.000+0000")
}
],
"count" : 5
}
{
"_id" : null,
"limit" : ISODate("2020-11-05T12:29:55.000+0000"),
"events" : [
{
"_id" : 63,
"eventID" : "XYZ",
"date" : ISODate("2020-11-05T12:19:55.000+0000")
},
{
"_id" : 90,
"eventID" : "XYZ",
"date" : ISODate("2020-11-05T12:27:57.000+0000")
},
{
"_id" : 97,
"eventID" : "XYZ",
"date" : ISODate("2020-11-05T12:29:36.000+0000")
}
],
"count" : 3
}
As you can see, looking at the limit of each group and at the dates of the events in each group, these intervals are now incremental, not disjoint. (event X is found in multiple groups, as long as it doesnt exceeds the time interval of 10minutes)
I have collection containing date field. I'm Grouping records by week and other related fields.
This is my aggregation query:
db.raw.aggregate([
{ "$match" : {
"Timestamp":{
"$gte": new Date("2012-05-30"),
"$lt": new Date("2014-07-31")
}
}},
{ "$group" : {
"_id":{
"ApplicationId": "$ApplicationId",
"Country": "$Country",
"week":{ "$week": "$Timestamp" }
},
"Date":{ "$first": "$Timestamp" },
"Visits": { "$sum": 1 }
}}
])
I want to Project : Visits and Start Date of week from week number.
For mongo >= v3.4, look at weekStart.
The idea is to substruct milliseconds from given Timestamp
db.raw.aggregate([
// stage 1
{ "$match" : {
"Timestamp":{
"$gte": ISODate("2012-05-30"),
"$lt": ISODate("2014-07-31")
}
}},
// stage 2
{ "$project" : {
ApplicationId: 1,
Country: 1,
week: {$isoWeek: "$Timestamp"},
// [TRICK IS HERE] Timestamp - dayOfWeek * msInOneDay
weekStart: { $dateToString: { format: "%Y-%m-%d", date: { // convert date
$subtract: ["$Timestamp", {$multiply: [ {$subtract:[{$isoDayOfWeek: "$Timestamp"},1]}, 86400000]}]
}}},
// stage 3
{ "$group" : {
"_id":{
"ApplicationId": "$ApplicationId",
"Country": "$Country",
"week": "$week"
},
"Date":{ "$first": "$weekStart" },
"Visits": { "$sum": 1 }
}}
])
You seem to want a "date value" representing the date at the start of the week. Your best approach is "date math" with a little help from the aggregation operator $dayOfWeek:
db.raw.aggregate([
{ "$match" : {
"Timestamp":{
"$gte": new Date("2012-05-30"),
"$lt": new Date("2014-07-31")
}
}},
{ "$group" : {
"_id":{
"ApplicationId": "$ApplicationId",
"Country": "$Country",
"weekStart":{
"$subtract": [
{ "$subtract": [
{ "$subtract": [ "$Timestamp", new Date("1970-01-01") ] },
{ "$cond": [
{ "$eq": [{ "$dayOfWeek": "$Timestamp" }, 1 ] },
0,
{ "$multiply": [
1000 * 60 * 60 * 24,
{ "$subtract": [{ "$dayOfWeek": "$Timestamp" }, 1 ] }
]}
]}
]},
{ "$mod": [
{ "$subtract": [
{ "$subtract": [ "$Timestamp", new Date("1970-01-01") ] },
{ "$cond": [
{ "$eq": [{ "$dayOfWeek": "$Timestamp" }, 1 ] },
0,
{ "$multiply": [
1000 * 60 * 60 * 24,
{ "$subtract": [{ "$dayOfWeek": "$Timestamp" }, 1 ] }
]}
]}
]},
1000 * 60 * 60 * 24
]}
]
}
},
"Date":{ "$first": "$Timestamp" },
"Visits": { "$sum": 1 }
}}
])
Or a little cleaner with $let from MongoDB 2.6 and upwards:
db.raw.aggregate([
{ "$match" : {
"Timestamp":{
"$gte": new Date("2012-05-30"),
"$lt": new Date("2014-07-31")
}
}},
{ "$group" : {
"_id":{
"ApplicationId": "$ApplicationId",
"Country": "$Country",
"weekStart":{
"$let": {
"vars": {
"dayMillis": 1000 * 60 * 60 * 24,
"beginWeek": {
"$subtract": [
{ "$subtract": [ "$Timestamp", new Date("1970-01-01") ] },
{ "$cond": [
{ "$eq": [{ "$dayOfWeek": "$Timestamp" }, 1 ] },
0,
{ "$multiply": [
1000 * 60 * 60 * 24,
{ "$subtract": [{ "$dayOfWeek": "$Timestamp" }, 1 ] }
]}
]}
]
}
},
"in": {
"$subtract": [
"$$beginWeek",
{ "$mod": [ "$$beginWeek", "$$dayMillis" ]}
]
}
}
}
},
"Date":{ "$first": "$Timestamp" },
"Visits": { "$sum": 1 }
}}
])
The resulting value in the "grouping" is the epoch milliseconds that represents the start of the day at the start of the week. The "start of the week" is generally considered to be "Sunday", so if you intend another day then you would need to adjust by the appropriate amount. The $add operator with the $dayMillis variable value can be used here to apply "Monday" for example.
It's not a date object, but something that you can easily feed to another method to construct a date object in post processing.
Also note that other things you are using such as $first usually require that the documents are sorted in a particular order, or generally by your "Timestamp" values. If those documents are not already ordered then you either $sort first or use an operator such as $min to get the first actual timestamp in the range.
With MongoDB 3.6
{
'$project' : {
'firstDateOfWeek': {
'$dateFromString': {
'dateString': {
'$concat': [
{
'$toString': '$_id.year'
},
'-',
{
'$toString': '$_id.week'
}
]
},
'format': "%G-%V"
}
}
}
}
From mongo 3.6
https://docs.mongodb.com/manual/reference/operator/aggregation/dateFromParts/
db.raw.aggregate([
{
"$match": {
"Timestamp": {
"$gte": new Date("2012-05-30"),
"$lt": new Date("2014-07-31")
}
}
},
{
"$group": {
"_id": {
"ApplicationId": "$ApplicationId",
"Country": "$Country",
"week": {
"$isoWeek": "$Timestamp"
},
"year": {
"$year": "$Timestamp"
}
},
"Visits": {
"$sum": 1
}
}
},
{
"$addFields": {
"Date": {
$dateFromParts: {
isoWeekYear: '$_id.year',
isoWeek: '$_id.week',
isoDayOfWeek: 1
}
}
}
}
])
For MongoDB >= v5.0 there is an even easier option now with the $dateTrunc operator, e.g.
$project: {
weekStart: {
$dateTrunc: {
date: "$Timestamp",
unit: "week",
startOfWeek: "Monday",
}
},
}
I have a document called user.monthly, in that I have we used store 'day' : no. of clicks .
Here I have given 2 samples for different date
For month January
{
name : "devid",
date : ISODate("2014-01-21T11:32:42.392Z"),
daily: {'1':12,'9':13,'30':13}
}
For month February
{
name : "devid",
date : ISODate("2014-02-21T11:32:42.392Z"),
daily: {'3':12,'12':13,'25':13}
}
How can I aggregate this and get total clicks for January and February ?
Please help me to resolve my problem.
Your current schema is not helping you here as the "daily" field ( which we presume is your clicks per type or something like that ) is represented as a sub-document, which means that you need to explicitly name the path to each field in order to do something with it.
A better approach would be to put this information in an array:
{
"name" : "devid",
"date" : ISODate("2014-02-21T11:32:42.392Z"),
"daily": [
{ "type": "3", "clicks": 12 },
{ "type": "12", "clicks": 13 },
{ "type": "25", "clicks": 13 }
]
}
Then you have an aggregation statement that goes like this:
db.collection.aggregate([
// Just match the dates in January and February
{ "$match": {
"date": {
"$gte": new Date("2014-01-01"), "$lt": new Date("2014-03-01")
}
}},
// Unwind the "daily" array
{ "$unwind": "$daily" },
// Group the values together by "type" on "January" and "February"
{ "$group": {
"_id": {
"year": { "$year": "$date" },
"month": { "$month": "$date" },
"type": "$daily.type"
},
"clicks": { "$sum": "$daily.clicks" }
}},
// Sort the result nicely
{ "$sort": {
"_id.year": 1,
"_id.month": 1,
"_id.type": 1
}}
])
That form is pretty simple. Or even if you do not care about the type as a grouping and just want the month totals:
db.collection.aggregate([
{ "$match": {
"date": {
"$gte": new Date("2014-01-01"), "$lt": new Date("2014-03-01")
}
}},
{ "$unwind": "$daily" },
{ "$group": {
"_id": {
"year": { "$year": "$date" },
"month": { "$month": "$date" },
},
"clicks": { "$sum": "$daily.clicks" }
}},
{ "$sort": { "_id.year": 1, "_id.month": 1 }}
])
But with the current sub-document form you currently have this becomes ugly:
db.collection.aggregate([
{ "$match": {
"date": {
"$gte": new Date("2014-01-01"), "$lt": new Date("2014-03-01")
}
}},
{ "$group": {
"_id": {
"year": { "$year": "$date" },
"month": { "$month": "$date" },
},
"clicks": {
"$sum": {
"$add": [
{ "$ifNull": ["$daily.1", 0] },
{ "$ifNull": ["$daily.3", 0] },
{ "$ifNull": ["$daily.9", 0] },
{ "$ifNull": ["$daily.12", 0] },
{ "$ifNull": ["$daily.25", 0] },
{ "$ifNull": ["$daily.30", 0] },
]
}
}
}}
])
That shows that you have no other option here other than to specify what is essentially every possible field under daily ( so probably much larger ). Then we have to evaluate as that key may possibly not exist for a given document to return a default value.
For example, your first document has no key "daily.3" so without the $ifNull check the returned value would be null and invalidate the whole $sum process so that the total would be "0".
Grouping on those keys as in the first aggregate example gets even worse:
db.collection.aggregate([
// Just match the dates in January and February
{ "$match": {
"date": {
"$gte": new Date("2014-01-01"), "$lt": new Date("2014-03-01")
}
}},
// Project with an array to match all possible values
{ "$project": {
"date": 1,
"daily": 1,
"type": { "$literal": ["1", "3", "9", "12", "25", "30" ] }
}},
// Unwind the "type" array
{ "$unwind": "$type" },
// Project values onto the "type" while grouping
{ "$group" : {
"_id": {
"year": { "$year": "$date" },
"month": { "$month": "$date" },
"type": "$type"
},
"clicks": { "$sum": { "$cond": [
{ "$eq": [ "$type", "1" ] },
"$daily.1",
{ "$cond": [
{ "$eq": [ "$type", "3" ] },
"$daily.3",
{ "$cond": [
{ "$eq": [ "$type", "9" ] },
"$daily.9",
{ "$cond": [
{ "$eq": [ "$type", "12" ] },
"$daily.12",
{ "$cond": [
{ "$eq": [ "$type", "25" ] },
"$daily.25",
"$daily.30"
]}
]}
]}
]}
]}}
}},
{ "$sort": {
"_id.year": 1,
"_id.month": 1,
"_id.type": 1
}}
])
Which is creating one big conditional evaluation using $cond to match out the values to the "type" which we projected all possible values in an array using the $literal operator.
If you do not have MongoDB 2.6 or greater you can always do this in place of the $literal operator statement:
"type": { "$cond": [1, ["1", "3", "9", "12", "25", "30" ], 0] }
Where essentially the true evaluation from $cond returns a "literal" declared value, which is how you specify an array. There is also the hidden $const operator that is not documented, but now exposed as $literal.
As you can see the structure here is doing you no favors, so the best option is to change it. But if you cannot and otherwise find the aggregation concept for this too hard to handle, then mapReduce offers an approach, but the processing will be much slower:
db.collection.mapReduce(
function () {
for ( var k in this.daily ) {
emit(
{
year: this.date.getFullYear(),
month: this.date.getMonth() + 1,
type: k
},
this.daily[k]
);
}
},
function(key,values) {
return Array.sum( values );
},
{
"query": {
"date": {
"$gte": new Date("2014-01-01"), "$lt": new Date("2014-03-01")
}
},
"out": { "inline": 1 }
}
)
The general lesson here is that you will get the cleanest and fastest results by altering the document format and using the aggregation framework. But all the ways to do this are listed here.