Using MLUtils.convertVectorColumnsToML() inside a UDF? - scala

I have a Dataset/Dataframe with a mllib.linalg.Vector (of Doubles) as one of the columns. I would like to add another column to this dataset of type ml.linalg.Vector to this data set (so I will have both types of Vectors). The reason is I am evaluating few algorithms and some of those expect mllib vector and some expect ml vector. Also, I have to feed o/p of one algorithm to another and each use different types.
Can someone please help me convert mllib.linalg.Vector to ml.linalg.Vector and append a new column to the data set in hand. I tried using MLUtils.convertVectorColumnsToML() inside an UDF and regular functions but not able to get it to working. I am trying to avoid creating a new dataset and then doing inner join and dropping the columns as the data set will be huge eventually and joins are expensive.

You can use the method toML to convert from mllib to ml vector. An UDF and usage example can look like this:
val convertToML = udf((mllibVec: org.apache.spark.mllib.linalg.Vector) = > {
mllibVec.asML
})
val df2 = df.withColumn("mlVector", convertToML($"mllibVector"))
Assuming df to be the original dataframe and the column with the mllib vector to be named mllibVector.

Related

How to pass a group of RelationalGroupedDataset to a function?

I am reading a csv as a Data Frame by below:
val df = sqlContext.read.format("com.databricks.spark.csv").option("header", "true").load("D:/ModelData.csv")
Then I group by three columns as below which returns a RelationalGroupedDataset
df.groupBy("col1", "col2","col3")
And I want each grouped data frame to be send through the below function
def ModelFunction(daf: DataFrame) = {
//do some calculation
}
For example if I have col1 having 2 unique (0,1) values and col2 having 2 unique values(1,2) and col3 having 3 unique values(1,2,3) Then i would like to pass each combination grouping to the Model function Like for col1=0 ,col2=1,col3=1 I will havea dataframe and I want to pass that to the ModelFunction and so on for each combination of the three columns.
I tried
df.groupBy("col1", "col2","col3").ModelFunction();
But it throw an error.
.
Any help is appreciated.
The short answer is that you cannot do that. You can only do aggregate functions on RelationalGroupedDataset (either ones you write as UDAF or built in ones in org.apache.spark.sql.functions)
The way I see it you have several options:
Option 1: The amount of data for each unique combination is small enough and not skewed too much compared to other combinations.
In this case you can do:
val grouped = df.groupBy("col1", "col2","col3").agg(collect_list(struct(all other columns)))
grouped.as[some case class to represent the data including the combination].map[your own logistic regression function).
Option 2: If the total number of combinations is small enough you can do:
val values: df.select("col1", "col2", "col3").distinct().collect()
and then loop through them creating a new dataframe from each combination by doing a filter.
Option 3: Write your own UDAF
This would probably not be good enough as the data comes in a stream without the ability to do iteration, however, if you have an implemenation of logistic regression which matches you can try to write a UDAF to do this. See for example: How to define and use a User-Defined Aggregate Function in Spark SQL?

Spark Scala - Apply ML/Complex functions on a GroupBy DataFrame

I have a large DataFrame (Spark 1.6 Scala) which looks like this:
Type,Value1,Value2,Value3,...
--------------------------
A,11.4,2,3
A,82.0,1,2
A,53.8,3,4
B,31.0,4,5
B,22.6,5,6
B,43.1,6,7
B,11.0,7,8
C,22.1,8,9
C,3.2,9,1
C,13.1,2,3
From this I want to group by Type and apply machine learning algorithms and/or perform complex functions on each group.
My objective is perform complex functions on each group in parallel.
I have tried the following approaches:
Approach 1) Convert Dataframe to Dataset and then use ds.mapGroups() api. But this is giving me an Iterator of each group values.
If i want to perform RandomForestClassificationModel.transform(dataset: DataFrame), i need a DataFrame with only a particular group values.
I was not sure converting Iterator to a Dataframe within mapGroups is a good idea.
Approach 2) Distinct on Type, then map on them and then filter for each Type with in the map loop:
val types = df.select("Type").distinct()
val ff = types.map(row => {
val type = row.getString(0)
val thisGroupDF = df.filter(col("Type") == type)
// Apply complex functions on thisGroupDF
(type, predictedValue)
})
For some reason, the above is never completing (seems to be getting into some kind of infinite loop)
Approach 3) Exploring Window functions, but did not find a method which can provide dataframe of particular group values.
Please help.

Is it inefficient to manually iterate Spark SQL data frames and create column values?

In order to run a few ML algorithms, I need to create extra columns of data. Each of these columns involves some fairly intense calculations that involves keeping moving averages and recording information as you go through each row (and updating it meanwhile). I've done a mock through with a simple Python script and it works, and I am currently looking to translate it to a Scala Spark script that could be run on a larger data set.
The issue is it seems that for these to be highly efficient, using Spark SQL, it is preferred to use the built in syntax and operations (which are SQL-like). Encoding the logic in a SQL expression seems to be a very thought-intensive process, so I'm wondering what the downsides will be if I just manually create the new column values by iterating through each row, keeping track of variables and inserting the column value at the end.
You can convert an rdd into dataframe. Then use map on the data frame and process each row as you wish. If you need to add new column, then you can use, withColumn. However this will only allow one column to be added and it happens for the entire dataframe. If you want more columns to be added, then inside map method,
a. you can gather new values based on the calculations
b. Add these new column values to main rdd as below
val newColumns: Seq[Any] = Seq(newcol1,newcol2)
Row.fromSeq(row.toSeq.init ++ newColumns)
Here row, is the reference of row in map method
c. Create new schema as below
val newColumnsStructType = StructType{Seq(new StructField("newcolName1",IntegerType),new StructField("newColName2", IntegerType))
d. Add to the old schema
val newSchema = StructType(mainDataFrame.schema.init ++ newColumnsStructType)
e. Create new dataframe with new columns
val newDataFrame = sqlContext.createDataFrame(newRDD, newSchema)

Applying function to Spark Dataframe Column

Coming from R, I am used to easily doing operations on columns. Is there any easy way to take this function that I've written in scala
def round_tenths_place( un_rounded:Double ) : Double = {
val rounded = BigDecimal(un_rounded).setScale(1, BigDecimal.RoundingMode.HALF_UP).toDouble
return rounded
}
And apply it to a one column of a dataframe - kind of what I hoped this would do:
bid_results.withColumn("bid_price_bucket", round_tenths_place(bid_results("bid_price")) )
I haven't found any easy way and am struggling to figure out how to do this. There's got to be an easier way than converting the dataframe to and RDD and then selecting from rdd of rows to get the right field and mapping the function across all of the values, yeah? And also something more succinct creating a SQL table and then doing this with a sparkSQL UDF?
You can define an UDF as follows:
val round_tenths_place_udf = udf(round_tenths_place _)
bid_results.withColumn(
"bid_price_bucket", round_tenths_place_udf($"bid_price"))
although built-in Round expression is using exactly the same logic as your function and should be more than enough, not to mention much more efficient:
import org.apache.spark.sql.functions.round
bid_results.withColumn("bid_price_bucket", round($"bid_price", 1))
See also following:
Updating a dataframe column in spark
How to apply a function to a column of a Spark DataFrame?

Append a column to Data Frame in Apache Spark 1.3

Is it possible and what would be the most efficient neat method to add a column to Data Frame?
More specifically, column may serve as Row IDs for the existing Data Frame.
In a simplified case, reading from file and not tokenizing it, I can think of something as below (in Scala), but it completes with errors (at line 3), and anyways doesn't look like the best route possible:
var dataDF = sc.textFile("path/file").toDF()
val rowDF = sc.parallelize(1 to DataDF.count().toInt).toDF("ID")
dataDF = dataDF.withColumn("ID", rowDF("ID"))
It's been a while since I posted the question and it seems that some other people would like to get an answer as well. Below is what I found.
So the original task was to append a column with row identificators (basically, a sequence 1 to numRows) to any given data frame, so the rows order/presence can be tracked (e.g. when you sample). This can be achieved by something along these lines:
sqlContext.textFile(file).
zipWithIndex().
map(case(d, i)=>i.toString + delimiter + d).
map(_.split(delimiter)).
map(s=>Row.fromSeq(s.toSeq))
Regarding the general case of appending any column to any data frame:
The "closest" to this functionality in Spark API are withColumn and withColumnRenamed. According to Scala docs, the former Returns a new DataFrame by adding a column. In my opinion, this is a bit confusing and incomplete definition. Both of these functions can operate on this data frame only, i.e. given two data frames df1 and df2 with column col:
val df = df1.withColumn("newCol", df1("col") + 1) // -- OK
val df = df1.withColumn("newCol", df2("col") + 1) // -- FAIL
So unless you can manage to transform a column in an existing dataframe to the shape you need, you can't use withColumn or withColumnRenamed for appending arbitrary columns (standalone or other data frames).
As it was commented above, the workaround solution may be to use a join - this would be pretty messy, although possible - attaching the unique keys like above with zipWithIndex to both data frames or columns might work. Although efficiency is ...
It's clear that appending a column to the data frame is not an easy functionality for distributed environment and there may not be very efficient, neat method for that at all. But I think that it's still very important to have this core functionality available, even with performance warnings.
not sure if it works in spark 1.3 but in spark 1.5 I use withColumn:
import sqlContext.implicits._
import org.apache.spark.sql.functions._
df.withColumn("newName",lit("newValue"))
I use this when I need to use a value that is not related to existing columns of the dataframe
This is similar to #NehaM's answer but simpler
I took help from above answer. However, I find it incomplete if we want to change a DataFrame and current APIs are little different in Spark 1.6.
zipWithIndex() returns a Tuple of (Row, Long) which contains each row and corresponding index. We can use it to create new Row according to our need.
val rdd = df.rdd.zipWithIndex()
.map(indexedRow => Row.fromSeq(indexedRow._2.toString +: indexedRow._1.toSeq))
val newstructure = StructType(Seq(StructField("Row number", StringType, true)).++(df.schema.fields))
sqlContext.createDataFrame(rdd, newstructure ).show
I hope this will be helpful.
You can use row_number with Window function as below to get the distinct id for each rows in a dataframe.
df.withColumn("ID", row_number() over Window.orderBy("any column name in the dataframe"))
You can also use monotonically_increasing_id for the same as
df.withColumn("ID", monotonically_increasing_id())
And there are some other ways too.