I need some help with MATLAB coding. I have two variables x=0:0.1:1 and y=0:0.1:1. I want to generate the meshgrid only for those points which satisfy the condition x+y<=1. Please help me.
[X,Y] = meshgrid(x,y) returns two matrixes, representing points from (0,0) to (1,1). The requirement to remove values where x + y >= 1 works well on a graph - basically just draw a diagonal line, creating a triangle. However, it doesn't work very well for matrices - who's ever heard of a triangle matrix?
What you can do is set the excluded values to some 'bad' value, and then ignore them. I chose to set them to NaN, because functions like surf won't plot nan's:
x = 0:.1:1;
y = 0:.1:1;
[X,Y] = surf(x,y);
X(X+Y>=1) = nan;
Y(X+Y>=1) = nan;
surf(X,Y,X.*Y)
Related
MATLAB's surf command allows you to pass it optional X and Y data that specify non-cartesian x-y components. (they essentially change the basis vectors). I desire to pass similar arguments to a function that will draw a line.
How do I plot a line using a non-cartesian coordinate system?
My apologies if my terminology is a little off. This still might technically be a cartesian space but it wouldn't be square in the sense that one unit in the x-direction is orthogonal to one unit in the y-direction. If you can correct my terminology, I would really appreciate it!
EDIT:
Below better demonstrates what I mean:
The commands:
datA=1:10;
datB=1:10;
X=cosd(8*datA)'*datB;
Y=datA'*log10(datB*3);
Z=ones(size(datA'))*cosd(datB);
XX=X./(1+Z);
YY=Y./(1+Z);
surf(XX,YY,eye(10)); view([0 0 1])
produces the following graph:
Here, the X and Y dimensions are not orthogonal nor equi-spaced. One unit in x could correspond to 5 cm in the x direction but the next one unit in x could correspond to 2 cm in the x direction + 1 cm in the y direction. I desire to replicate this functionality but drawing a line instead of a surf For instance, I'm looking for a function where:
straightLine=[(1:10)' (1:10)'];
my_line(XX,YY,straightLine(:,1),straightLine(:,2))
would produce a line that traced the red squares on the surf graph.
I'm still not certain of what your input data are about, and what you want to plot. However, from how you want to plot it, I can help.
When you call
surf(XX,YY,eye(10)); view([0 0 1]);
and want to get only the "red parts", i.e. the maxima of the function, you are essentially selecting a subset of the XX, YY matrices using the diagonal matrix as indicator. So you could select those points manually, and use plot to plot them as a line:
Xplot = diag(XX);
Yplot = diag(YY);
plot(Xplot,Yplot,'r.-');
The call to diag(XX) will take the diagonal elements of the matrix XX, which is exactly where you'll get the red patches when you use surf with the z data according to eye().
Result:
Also, if you're just trying to do what your example states, then there's no need to use matrices just to take out the diagonal eventually. Here's the same result, using elementwise operations on your input vectors:
datA = 1:10;
datB = 1:10;
X2 = cosd(8*datA).*datB;
Y2 = datA.*log10(datB*3);
Z2 = cosd(datB);
XX2 = X2./(1+Z2);
YY2 = Y2./(1+Z2);
plot(Xplot,Yplot,'rs-',XX2,YY2,'bo--','linewidth',2,'markersize',10);
legend('original','vector')
Result:
Matlab has many built-in function to assist you.
In 2D the easiest way to do this is polar that allows you to make a graph using theta and rho vectors:
theta = linspace(0,2*pi,100);
r = sin(2*theta);
figure(1)
polar(theta, r), grid on
So, you would get this.
There also is pol2cart function that would convert your data into x and y format:
[x,y] = pol2cart(theta,r);
figure(2)
plot(x, y), grid on
This would look slightly different
Then, if we extend this to 3D, you are only left with plot3. So, If you have data like:
theta = linspace(0,10*pi,500);
r = ones(size(theta));
z = linspace(-10,10,500);
you need to use pol2cart with 3 arguments to produce this:
[x,y,z] = pol2cart(theta,r,z);
figure(3)
plot3(x,y,z),grid on
Finally, if you have spherical data, you have sph2cart:
theta = linspace(0,2*pi,100);
phi = linspace(-pi/2,pi/2,100);
rho = sin(2*theta - phi);
[x,y,z] = sph2cart(theta, phi, rho);
figure(4)
plot3(x,y,z),grid on
view([-150 70])
That would look this way
Im just trying to draw a line through the following points in matlab. Currently the line extends only to the points. I need to to extend and intercept the x axis. The code is below
A = [209.45 198.066 162.759];
B = [1.805 1.637 1.115];
plot(A,B,'*');
axis([0 210 0 2]);
hold on
line(A,B)
hold off
If you want to augment your points with a corresponding y==0 point, I suggest using interp1 to obtain the x-intercept:
A = [209.45 198.066 162.759];
B = [1.805 1.637 1.115];
x0 = interp1(B,A,0,'linear','extrap'); %extrapolate (y,x) at y==0 to get x0
[newA, inds] = sort([x0 A]); %insert x0 where it belongs
newB = [0 B];
newB = newB(inds); %keep the same order with B
plot(A,B,'b*',newA,newB,'b-');
This will use interp1 to perform a linear interpolant, with extrapolation switched on. By interpolating (B,A) pairs, we in effect invert your linear function.
Next we add the (x0,0) point to the data, but since matlab draws lines in the order of the points, we have to sort the vector according to x component. The sorting order is then used to keep the same order in the extended B vector.
Finally the line is plotted. I made use of plot with a linespec of '-' to draw the line in the same command as the points themselves. If it doesn't bother you that the (x0,0) point is also indicated, you can plot both markers and lines together using plot(newA,newB,'*-'); which ensures that the colors match up (in the above code I manually set the same blue colour on both plots).
I have 3D flow data of the velocity of a fluid through a tube. I know the diameter of the tube and have looked at the velocity field and found the centre of the field for an xy plane at both ends of the tube. So I essentially have a line through the centre axis of the tube. I want to NaN all data points that are outside of the diameter. For this I am using an equation that gives the distance to a point from a line in 3D which I found here mathworld.wolfram.com/Point-LineDistance3-Dimensional.html. I then created an if statement which states points smaller than diameter will be NaN.
I am new to matlab so I don't know how I would now plot this.
%%
diff_axis = end_axis-start_axis;
diff_axis_mag = (diff_axis(1)^2 + diff_axis(2)^2 + diff_axis(3)^2)^0.5;
[rw col pl] = size(X);
for j = 1:col
for i = 1:rw
for k = 1:pl
x_curr = X(i,j,k);
y_curr = Y(i,j,k);
z_curr= Z(i,j,k);
x0 = [x_curr y_curr z_curr]
t = - dot((start_axis-x0),(diff_axis))./(diff_axis_mag)^2;
d = sqrt(((start_axis(1) - x0(1)) + (end_axis(1) - start_end(1))*t)^2 + ((start_axis(2)-x0(2))+(end_axis(2)-start_end(2))*t)^2+((start_axis(3)-x0(3))+(end_axis(3)-start_end(3))*t)^2);
if (d > D)
x_curr=NaN
y_curr=NaN
z_curr=NaN
end
end
end
end
It were nice to have explanatory names for your X, Y, and Z. I am guessing they are flow components, and diff_axis are axis coordinates? It is a very cumbersome notation.
what you do in your loops is you take point values (X,Y,Z), copy them to temporary constants and then set them to NaN if they fall out. But the problem is that usually you do not plot point-by-point in MATLAB. So these temorary guys like x_curr will be lost.
Also, the most optimal way to do things in MATLAB is to avoid loops whenever possible.
What you can do is to create first a mask
%// remember to put a dot like in `.^` for entrywise array operations
diff_axis_mag = sqrt(diff_axis(1).^2 + diff_axis(2).^2 + diff_axis(3).^2);
%// are you sure you need to include the third axis?
%// then it is a ball, not a tube
%// create a binary mask
mask = diff_axis_mag < tube_radius
X(~mask) = NaN;
Y(~mask) = NaN;
Z(~mask) = NaN;
Then you can plot your data with quiver3 or
stream3
I know the locations of spheres (center and radius) in a box. I want to extract cross sections. I am able to plot the spheres placed in a cube using the following Matlab code:
[X,Y,Z] = sphere;
for SpNum = 1:NumSpheres
surf( X*Radius(SpNum)+Center(SpNum,1), Y*Radius(SpNum)+Center(SpNum,2), Z*Radius(SpNum)+Center(SpNum,3), ...
'FaceColor','r' );
%shading interp;
hold on;
end
axis tight; daspect([1 1 1]);
In the above code, each sphere could have different radius and they do not overlap (so the centers are also different).
The above code does not however generate cross sections. I want to extract cross sections similar to what we get from say X-ray CT data: a series of images in the Z-direction. I think 'interp2/interp3' and 'slice' functions are the relevant functions, but I am not sure how to use them to generate the cross sections. I would appreciate if anyone could give pointers or provide some sample code for my problem?
-- Thanks in advance.
Update:
I tried using meshgrid to generate the grid points followed by the function F(X,Y,Z) as follows:
[X,Y,Z] = meshgrid(1:100,1:100,1:100);
F = zeros(size(X),'uint8');
for SpNum = 1:NumSpheres
F( sqrt((X - Center(SpNum,1)).^2 + (Y - Center(SpNum,2)).^2 + (Z - Center(SpNum,3)).^2) <= Radius(SpNum) ) = 1;
end
surf(F);
followed by:
z = 1;
I = interp3(X, Y, Z, X*Radius(SpNum)+Center(SpNum,1), Y*Radius(SpNum)+Center(SpNum,2), Z*Radius(SpNum)+Center(SpNum,3), z, 'spline');
figure, imshow(I);
I know that interp3 is the function to use since it interpolates the values of the function F(X,Y,Z) which represent the spheres at different location within a bounded box (say 1:100, 1:100, 1:100). The interpolated values at particular 'z' (= 1, 2, 3... 100) should give me 100 cross sections (in the form of 2-D images).
The flaw is in the function F itself, since 'surf' throws an error saying that F should be an array - "CData must be an M-by-N matrix or M-by-N-by-3 array".
Can anyone please help.
I finally figured it. For the benefit of others, here is the code.
% A 3-D matrix 'F' which has its value at particular coordinate set to 255 if it belongs to any one of the spheres and 0 otherwise.
[X,Y,Z] = meshgrid(1:100,1:100,1:100);
F = zeros(size(X));
for SpNum = 1:NumSpheres
F( sqrt((X - Center(SpNum,1)).^2 + (Y - Center(SpNum,2)).^2 + (Z - Center(SpNum,3)).^2) <= Radius(SpNum) ) = 255;
end
% Extract cross sections from F using interp3 function along the z-axis.
I = zeros(size(X));
for z = 1:100
I(:,:,z) = interp3(X, Y, Z, F, 1:100, (1:100)', z, 'spline');
end
implay(I,4);
You could test and visualize the output by setting Center (a 3-D vector) and Radius of each sphere (some arbitrary NumSpheres) to some random values. The above code will display a window with cross-sections.
Previously, I was trying to use 'surf' to render the spheres which is not right. To render, you have to use the first code snippet. Another mistake I made was using a row vector for the 6th argument instead of column vector.
Hope this helps.
--
Cheers,
Ram.
Can someone share a technique using MATLAB to plot the surface f(x,y)=(21/4)x^2y over the region x^2 <= y <= 1?
Also, if anyone is aware of some tutorials or links that would help with this type of problem, could you please share them?
Thanks.
Here is another approach:
%%
close all
x=linspace(-1,1,40);
g1=x.^2;
g2=ones(1,40);
y=[];
n=20;
for k=0:n
y=[y;g1+(g2-g1)*k/n];
end
x=x(ones(1,n+1),:);
z=21/4*x.^2.*y;
meshz(x,y,z)
axis tight
xlabel('x-axis')
ylabel('y-axis')
view(136,42)
And the result:
And finally, you can map the region (-1,1)x(0,1) in the uv-plane into the region bounded by $y=x^2 and y=1 in the xy-plane with the parametrization:
f(u,v) = (u\sqrt{v},v)
Capture from: https://math.stackexchange.com/questions/823168/transform-rectangular-region-to-region-bounded-by-y-1-and-y-x2
This code produces the same image shown above:
close all
[u,v]=meshgrid(linspace(-1,1,40),linspace(0,1,20));
x=u.*sqrt(v);
y=v;
z=21/4*x.^2.*y;
meshz(x,y,z)
axis tight
xlabel('x-axis')
ylabel('y-axis')
view(136,42)
First off, let's look at your valid region of values. This is telling us that y >= x^2 and also y <= 1. This means that your y values need to be on the positive plane bounded by the parabola x^2 and they also must be less than or equal to 1. In other words, your y values must be bound within the area dictated from y = x^2 to y = 1. Pictorially, your y values are bounded within this shape:
As such, your x values must also be bound between -1 and 1. Therefore, your actual boundaries are: -1 <= x <= 1 and 0 <= y <= 1. However, this only locates our boundaries for x and y but it doesn't handle where the plot has valid values. We'll tackle that later.
Now that we have that established, you can use ezsurf to plot surface plots in MATLAB that are dictated by a 2D equation.
You call ezsurf like so:
ezsurf(FUN, [XMIN,XMAX,YMIN,YMAX]);
FUN is a function or a string that contains the equation you want, and XMIN,XMAX,YMIN,YMAX contain the lowest and highest x and y values you want to plot. Plotting without these values assumes a span from -2*pi to 2*pi in both dimensions. As such, let's create a new function that will handle when we have valid values, and when we don't. Use this code, and save it to a new file called myfun.m. Make sure you save this to your current Working Directory.
function z = myfun(x,y)
z = (21/4)*x.^2.*y;
z(~(x.^2 <= y & y <= 1)) = nan;
end
This will allow you to take a series of x and y values and output values that are dictated by the 2D equation that you have given us. Any values that don't satisfy the condition of x^2 <= y <= 1, you set them to NaN. ezsurf will not plot NaN values.
Now, call ezsurf like so:
ezsurf(#myfun, [-1,1,0,1]);
You thus get:
This will spawn a new figure for you, and there are some tools at the top that will allow you interact with your 3D plot. For instance, you can use the rotation tool that's at the top bar beside the hand to rotate your figure around and see what this looks like. Click on this tool, then left click your mouse and hold the left mouse button anywhere within the surface plot. You can drag around, changing the azimuth and the latitude to get the perspective that you want.
Edit: June 4th, 2014
Noting your comments, we can decrease the jagged edges by increasing the number of points in the plot. As such, you can append a final parameter to ezsurf which is N, the number of points to add in each dimension. Increasing the number of points will decrease the width in between each point and so the plot will look smoother. The default value of N is 60 in both dimensions. Let's try increasing the amount of points in each dimension to 100.
ezsurf(#myfun, [-1,1,0,1], 100);
Your plot will look like:
Hope this helps!
Try the following to make the required function, compute the values, and plot only the region that is desired:
% Make the function. You could put this in a file by itself, if you wanted.
f = #(x,y) (21/4)*x.^2.*y;
[X Y] = meshgrid(linspace(0,1));
Z = f(X,Y);
% compute the values we want to plot:
valsToPlot = (X.^2 <= Y) & (Y <= 1);
% remove the values that we don't want to plot:
X(~valsToPlot) = nan;
Y(~valsToPlot) = nan;
Z(~valsToPlot) = nan;
% And... plot.
figure(59382);
clf;
surf(X,Y,Z);