I want to find the minimum amount of lag between two vector , I mean the minimum distance that something is repeated in vector based on another one
for example for
x=[0 0 1 2 2 2 0 0 0 0]
y=[1 2 2 2 0 0 1 2 2 2]
I want to obtain 4 for x to y and obtain 2 for y to x .
I found out a finddelay(x,y) function that works correctly only for x to y (it gives -4 for y to x).
is there any function that only give me lag based on going to the right direction of the vector? I will be so thankful if you'd mind helping me to get this result
I think this may be a potential bug in finddelay. Note this excerpt from the documentation (emphasis mine):
X and Y need not be exact delayed copies of each other, as finddelay(X,Y) returns an estimate of the delay via cross-correlation. However this estimated delay has a useful meaning only if there is sufficient correlation between delayed versions of X and Y. Also, if several delays are possible, as in the case of periodic signals, the delay with the smallest absolute value is returned. In the case that both a positive and a negative delay with the same absolute value are possible, the positive delay is returned.
This would seem to imply that finddelay(y, x) should return 2, when it actually returns -4.
EDIT:
This would appear to be an issue related to floating-point errors introduced by xcorr as I describe in my answer to this related question. If you type type finddelay into the Command Window, you can see that finddelay uses xcorr internally. Even when the inputs to xcorr are integer values, the results (which you would expect to be integer values as well) can end up having floating-point errors that cause them to be slightly larger or smaller than an integer value. This can then change the indices where maxima would be located. The solution is to round the output from xcorr when you know your inputs are all integer values.
A better implementation of finddelay for integer values might be something like this, which would actually return the delay with the smallest absolute value:
function delay = finddelay_int(x, y)
[d, lags] = xcorr(x, y);
d = round(d);
lags = -lags(d == max(d));
[~, index] = min(abs(lags));
delay = lags(index);
end
However, in your question you are asking for the positive delays to be returned, which won't necessarily be the smallest in absolute value. Here's a different implementation of finddelay that works correctly for integer values and gives preference to positive delays:
function delay = finddelay_pos(x, y)
[d, lags] = xcorr(x, y);
d = round(d);
lags = -lags(d == max(d));
index = (lags <= 0);
if all(index)
delay = lags(1);
else
delay = lags(find(index, 1)-1);
end
end
And here are the various results for your test case:
>> x = [0 0 1 2 2 2 0 0 0 0];
>> y = [1 2 2 2 0 0 1 2 2 2];
>> [finddelay(x, y) finddelay(y, x)] % The default behavior, which fails to find
% the delays with smallest absolute value
ans =
4 -4
>> [finddelay_int(x, y) finddelay_int(y, x)] % Correctly finds the delays with the
% smallest absolute value
ans =
-2 2
>> [finddelay_pos(x, y) finddelay_pos(y, x)] % Finds the smallest positive delays
ans =
4 2
Related
From a binary matrix, I want to calculate a kind of adjacency/joint probability density matrix (not quite sure how to label it as so please feel free to rename).
For example, I start with this matrix:
A = [1 1 0 1 1
1 0 0 1 1
0 0 0 1 0]
I want to produce this output:
Output = [1 4/5 1/5
4/5 1 1/5
1/5 1/5 1]
Basically, for each row, I want to calculate the proportion of times where they agreed (1 and 1 or 0 and 0). A will always agree with itself and thus have it as 1 along the diagonal. No matter how many different js are added it will still result in a 3x3, but an extra i variable will result in a 4x4.
I like to think of the inputs along i in the A matrix as the person and Js as the question and so the final output is a 3x3 (number of persons) matrix.
I am having some trouble with this on matlab. If you could please help point me in the right direction that would be fabulous.
So, you can do this in two parts.
bothOnes = A*A';
gives you a matrix showing how many 1s each pair of rows share, and
bothZeros = (1-A)*(1-A)';
gives you a matrix showing how many 0s each pair of rows share.
If you just add them up, you get how many elements they share of either type:
bothSame = A*A' + (1-A)*(1-A)';
Then just divide by the row length to get the desired fractional representation:
output = (A*A' + (1-A)*(1-A)') / size(A, 2);
That should get you there.
Note that this only works if A contains only 1's and 0's, but it can be adapted for other cases.
Here are some alternatives, assuming A can only contain 0 and 1:
If you have the Statistics Toolbox:
result = 1-squareform(pdist(A, 'hamming'));
Manual approach with implicit expansion:
result = mean(permute(A, [1 3 2])==permute(A, [3 1 2]), 3);
Using bitwise operations. This is a more esoteric approach, and is only valid if A has at most 53 columns, due to floating-point limitations:
t = bin2dec(char(A+'0')); % convert each row from binary to decimal
u = bitxor(t, t.'); % bitwise xor
v = mean(dec2bin(u)-'0', 2); % compute desired values
result = 1 - reshape(v, size(A,1), []); % reshape to obtain result
I am working on developing a suite classifiers for EEG signals and I will be needing a zero-crossings around mean function, defined in the following manner:
Ideally if I have some vector with a range of values representing a sinusoid or any time varying signal, I will want to return a vector of Booleans of the same size as the vector saying if that particular value is a mean crossing. I have the following Matlab implementation:
ZX = #(x) sum(((x - mean(x)>0) & (x - mean(x)<0)) | ((x - mean(x)<0) & (x - mean(x)>0)));
Testing it on toy data:
[0 4 -6 9 -20 -5]
Yields:
0
EDIT:
Yet I believe it should return:
3
What am I missing here?
An expression like:
((x-m)>0) & ((x-m)<0)
is always going to return a vector of all zeros because no individual element of x is both greater and less than zero. You need to take into account the subscripts on the xs in the definition of ZX:
((x(1:end-1)-m)>0) & ((x(2:end)-m)<0)
You can use the findpeaks function on -abs(x), where x is your original data, to find the peak locations. This would give you the zero crossings in general for continuous signals which do not have zero as an actual maximum of the signal.
t = 0:0.01:10;
x = sin(pi*t);
plot(t,x)
grid
y = -abs(x);
[P,L] = findpeaks(y,t);
hold on
plot(L,P,'*')
A simple solution is to use movprod, and count the products which are negative, i.e.,
cnt = sum(sign(movprod(x-mean(x),2))<0);
With your toy example, you will get cnt = 3.
With a matrix of numbers in Matlab, how would you find the first negative number after a series of positive numbers?
So far, the only answer I could come up with was to write a loop to check for the first negative number, then record it, then look for the first positive number, and truncate the array there, then start over. Is there a vectorized way to do this?
e.g., I have x = [ -1 -5 -2 3 4 8 -2 -3 1 9], and I want this function or script to give me an array of y = [1 7].
or
find(diff(sign([1 x]))<0)
that is to say: find the locations in x where the difference in sign between successive elements is negative, oh and pushing a 1 onto the front of x to take care of the case where the 1st element is already negative
This is a quite home made solution, check it out
x = [ -1 -5 -2 3 4 8 -2 -3 1 9]
neg_idx = find(x < 0) % // negative values
z = [0 diff(neg_idx)] % // increments among indices of successive values;
% // consecutive indices return a difference of 1 whereas
% // non consecutive return a value greater than 1.
% // because the first element must be distinguished
% // we put the zero in front
id = find(z ~= 1) % // Every time there is a jump, a non consecutive neg.
% // value appears
% // thus the solution is in
y = neg_idx(id)
ans =
1 7
If neg_idx is empty (i.e. no negative value is involved) you will get an Index exceeds matrix dimensions, although the condition is immediate to check.
I'm trying to find the max machine number x that satisfies the following equation: x+a=a, where a is a given integer. (I'm not allowed to use eps.)
Here's my code (which is not really working):
function [] = Largest_x()
a=2184;
x=0.0000000001
while (x+a)~=a
x=2*x;
end
fprintf('The biggest value of x in order that x+a=a \n (where a is equal to %g) is : %g \n',a,x);
end
Any help would be much appreciated.
The answer is eps(a)/2.
eps is the difference to the next floating point number, so if you add half or less than that to a float, it won't change. For example:
100+eps(100)/2==100
ans =
1
%# divide by less than two
100+eps(100)/1.9==100
ans =
0
%# what is that number x?
eps(100)/2
ans =
7.1054e-15
If you don't want to rely on eps, you can calculate the number as
2^(-53+floor(log2(a)))
You're small algorithm is certainly not correct. The only conditions where A = X + A are when X is equal to 0. By default matlab data types are doubles with 64 bits.
Lets pretend that matlab were instead using 8 bit integers. The only way to satisfy the equation A = X + A is for X to have the binary representation of [0 0 0 0 0 0 0 0]. So any number between 1 and 0 would work as decimal points are truncated from integers. So again if you were using integers A = A + X would resolve to true if you were to set the value of X to any value between [0,1). However this value is meaningless because X would not take on this value but rather it would take on the value of 0.
It sounds like you are trying to find the resolution of matlab data types. See this: http://www.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html
The correct answer is that, provided by Jonas: 0.5 * eps(a)
Here is an alternative for the empirical and approximate solution:
>> a = 2184;
>> e = 2 .^ (-100 : 100); % logarithmic scale
>> idx = find(a + e == a, 1, 'last')
idx =
59
>> e(idx)
ans =
2.2737e-013
I have a 3x3 matrix, A. I also compute a value, g, as the maximum eigen value of A. I am trying to change the element A(3,3) = 0 for all values from zero to one in 0.10 increments and then update g for each of the values. I'd like all of the other matrix elements to remain the same.
I thought a for loop would be the way to do this, but I do not know how to update only one element in a matrix without storing this update as one increasingly larger matrix. If I call the element at A(3,3) = p (thereby creating a new matrix Atry) I am able (below) to get all of the values from 0 to 1 that I desired. I do not know how to update Atry to get all of the values of g that I desire. The state of the code now will give me the same value of g for all iterations, as expected, as I do not know how to to update Atry with the different values of p to then compute the values for g.
Any suggestions on how to do this or suggestions for jargon or phrases for me to web search would be appreciated.
A = [1 1 1; 2 2 2; 3 3 0];
g = max(eig(A));
% This below is what I attempted to achieve my solution
clear all
p(1) = 0;
Atry = [1 1 1; 2 2 2; 3 3 p];
g(1) = max(eig(Atry));
for i=1:100;
p(i+1) = p(i)+ 0.01;
% this makes a one giant matrix, not many
%Atry(:,i+1) = Atry(:,i);
g(i+1) = max(eig(Atry));
end
This will also accomplish what you want to do:
A = #(x) [1 1 1; 2 2 2; 3 3 x];
p = 0:0.01:1;
g = arrayfun(#(x) eigs(A(x),1), p);
Breakdown:
Define A as an anonymous function. This means that the command A(x) will return your matrix A with the (3,3) element equal to x.
Define all steps you want to take in vector p
Then "loop" through all elements in p by using arrayfun instead of an actual loop.
The function looped over by arrayfun is not max(eig(A)) but eigs(A,1), i.e., the 1 largest eigenvalue. The result will be the same, but the algorithm used by eigs is more suited for your type of problem -- instead of computing all eigenvalues and then only using the maximum one, you only compute the maximum one. Needless to say, this is much faster.
First, you say 0.1 increments in the text of your question, but your code suggests you are actually interested in 0.01 increments? I'm going to operate under the assumption you mean 0.01 increments.
Now, with that out of the way, let me state what I believe you are after given my interpretation of your question. You want to iterate over the matrix A, where for each iteration you increase A(3, 3) by 0.01. Given that you want all values from 0 to 1, this implies 101 iterations. For each iteration, you want to calculate the maximum eigenvalue of A, and store all these eigenvalues in some vector (which I will call gVec). If this is correct, then I believe you just want the following:
% Specify the "Current" A
CurA = [1 1 1; 2 2 2; 3 3 0];
% Pre-allocate the values we want to iterate over for element (3, 3)
A33Vec = (0:0.01:1)';
% Pre-allocate a vector to store the maximum eigenvalues
gVec = NaN * ones(length(A33Vec), 1);
% Loop over A33Vec
for i = 1:1:length(A33Vec)
% Obtain the version of A that we want for the current i
CurA(3, 3) = A33Vec(i);
% Obtain the maximum eigen value of the current A, and store in gVec
gVec(i, 1) = max(eig(CurA));
end
EDIT: Probably best to paste this code into your matlab editor. The stack-overflow automatic text highlighting hasn't done it any favors :-)
EDIT: Go with Rody's solution (+1) - it is much better!