I try to do some binary classification with the flink-ml svm implementation.
When I evaluated the classification I got a ~85% error rate on the training dataset. I plotted the 3D data and it looked like you could separate the data quite well with a hyperplane.
When I tried to get the weight vector out of the svm I only saw the option to get the weight vector without the interception of the hyperplane. So just a hyperplane going through (0,0,0).
I don't have any clue where the error could be and appreciate every clue.
val env = ExecutionEnvironment.getExecutionEnvironment
val input: DataSet[(Int, Int, Boolean, Double, Double, Double)] = env.readCsvFile(filepathTraining, ignoreFirstLine = true, fieldDelimiter = ";")
val inputLV = input.map(
t => { LabeledVector({if(t._3) 1.0 else -1.0}, DenseVector(Array(t._4, t._5, t._6)))}
)
val trainTestDataSet = Splitter.trainTestSplit(inputLV, 0.8, precise = true, seed = 100)
val trainLV = trainTestDataSet.training
val testLV = trainTestDataSet.testing
val svm = SVM()
svm.fit(trainLV)
val testVD = testLV.map(lv => (lv.vector, lv.label))
val evalSet = svm.evaluate(testVD)
// groups the data in false negatives, false positives, true negatives, true positives
evalSet.map(t => (t._1, t._2, 1)).groupBy(0,1).reduce((x1,x2) => (x1._1, x1._2, x1._3 + x2._3)).print()
The plotted data is shown here:
The SVM classifier doesn't give you the distance to the origin (aka. bias or threshold), because that's a parameter of the predictor. Different values of the threshold will result in different precision and recall metrics and the optimum is use-case specific. Usually we use a ROC (Receiver Operating Characteristic) curve to find it.
The related properties on SVM are (from the Flink docs):
ThresholdValue - to set the threshold for testing / predicting. Outputs below are classified as negative and outputs above as positive. Default is 0.
OutputDecisionFunction - set this to true to output the distance to the separating plane instead of the binary classification.
ROC Curve
How to find the optimum threshold is an art in itself. Without knowing anything more about the problem, what you can always do is plot the ROC curve (the True Positive Rate against the False Positive Rate) for different values of the threshold and look for the point with the greatest distance from a random guess (the line with 0.5 slope). But ultimately the choice of threshold also depends on the cost of a false positive vs. the cost of a false negative in your domain. Here is an example ROC curve from Wikipedia for three different classifiers:
To choose the initial threshold you could average it over the training data (or a sample of it):
// weights is a DataSet of size 1
val weights = svm.weightsOption.get.collect().head
val initialThreshold = trainLV.map { lv =>
(lv.label - (weights dot lv.vector), 1l)
}.reduce { (avg1, avg2) =>
(avg1._1 + avg2._1, avg1._2 + avg2._2)
}.collect() match { case Seq((sum, len)) =>
sum / len
}
and then vary it in a loop, measuring the TPR and FPR on the test data.
Other Hyperparameters
Note that the SVM trainer also has Parameters (those are called hyperparameters) that need to be tuned for optimal prediction performance. There are many techniques to do that and this post would become too long to list them. I just wanted to bring your attention to that. If you're feeling lazy, here's a link on Wikipedia: Hyperparameter optimization.
Other Dimensions?
There is (somewhat of) a hack if you don't want to deal with the threshold right now. You can jam the bias into another dimension of the feature vector like so:
val bias = 10 // choose a large value
val inputLV = input.map { t =>
LabeledVector(
if (t._3) 1.0 else -1.0,
DenseVector(Array(t._4, t._5, t._6, bias)))
}
Here is a nice discussion on why you should NOT do this. Basically the problem is that the bias would participate in regularization. But in machine learning there are no absolute truths.
Related
A Triplet network (inspired by "Siamese network") is comprised of 3 instances of the same feed-forward network (with shared parameters). When fed with 3 samples, the network outputs 2 intermediate values - the L2 (Euclidean) distances between the embedded representation of two of its inputs from
the representation of the third.
I'm using pairs of three images for feeding the network (x = anchor image, a standard image, x+ = positive image, an image containing the same object as x - actually, x+ is same class as x, and x- = negative image, an image with different class than x.
I'm using the triplet loss cost function described here.
How do I determine the network's accuracy?
I am assuming that your are doing work for image retrieval or similar tasks.
You should first generate some triplet, either randomly or using some hard (semi-hard) negative mining method. Then you split your triplet into train and validation set.
If you do it this way, then you can define your validation accuracy as proportion of the number of triplet in which feature distance between anchor and positive is less than that between anchor and negative in your validation triplet. You can see an example here which is written in PyTorch.
As another way, you can directly measure in term of your final testing metric. For example, for image retrieval, typically, we measure the performance of model on test set using mean average precision. If you use this metric, you should first define some queries on your validation set and their corresponding ground truth image.
Either of the above two metric is fine. Choose whatever you think fit your case.
So I am performing a similar task of using Triplet loss for classification. Here is how I used the novel loss method with a classifier.
First, train your model using the standard triplet loss function for N epochs. Once you are sure that the model ( we shall refer to this as the embedding generator) is trained, save the weights as we shall be using these weights ahead.
Let's say that your embedding generator is defined as:
class EmbeddingNetwork(nn.Module):
def __init__(self):
super(EmbeddingNetwork, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(1, 64, (7,7), stride=(2,2), padding=(3,3)),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.001),
nn.MaxPool2d((3, 3), 2, padding=(1,1))
)
self.conv2 = nn.Sequential(
nn.Conv2d(64,64,(1,1), stride=(1,1)),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.001),
nn.Conv2d(64,192, (3,3), stride=(1,1), padding=(1,1)),
nn.BatchNorm2d(192),
nn.LeakyReLU(0.001),
nn.MaxPool2d((3,3),2, padding=(1,1))
)
self.fullyConnected = nn.Sequential(
nn.Linear(7*7*256,32*128),
nn.BatchNorm1d(32*128),
nn.LeakyReLU(0.001),
nn.Linear(32*128,128)
)
def forward(self,x):
x = self.conv1(x)
x = self.conv2(x)
x = self.fullyConnected(x)
return torch.nn.functional.normalize(x, p=2, dim=-1)
Now we shall using this embedding generator to create another classifier, fit the weights we saved before to this part of the network and then freeze this part so our classifier trainer does not interfere with the triplet model. This can be done as:
class classifierNet(nn.Module):
def __init__(self, EmbeddingNet):
super(classifierNet, self).__init__()
self.embeddingLayer = EmbeddingNet
self.classifierLayer = nn.Linear(128,62)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x = self.dropout(self.embeddingLayer(x))
x = self.classifierLayer(x)
return F.log_softmax(x, dim=1)
Now we shall load the weights we saved before and freeze them using:
embeddingNetwork = EmbeddingNetwork().to(device)
embeddingNetwork.load_state_dict(torch.load('embeddingNetwork.pt'))
classifierNetwork = classifierNet(embeddingNetwork)
Now train this classifier network using the standard classification losses like BinaryCrossEntropy or CrossEntropy.
I've been trying to fit a sine curve with a keras (theano backend) model using pymc3. I've been using this [http://twiecki.github.io/blog/2016/07/05/bayesian-deep-learning/] as a reference point.
A Keras implementation alone fit using optimization does a good job, however Hamiltonian Monte Carlo and Variational sampling from pymc3 is not fitting the data. The trace is stuck at where the prior is initiated. When I move the prior the posterior moves to the same spot. The posterior predictive of the bayesian model in cell 59 is barely getting the sine wave, whereas the non-bayesian fit model gets it near perfect in cell 63. I created a notebook here: https://gist.github.com/tomc4yt/d2fb694247984b1f8e89cfd80aff8706 which shows the code and the results.
Here is a snippet of the model below...
class GaussWeights(object):
def __init__(self):
self.count = 0
def __call__(self, shape, name='w'):
return pm.Normal(
name, mu=0, sd=.1,
testval=np.random.normal(size=shape).astype(np.float32),
shape=shape)
def build_ann(x, y, init):
with pm.Model() as m:
i = Input(tensor=x, shape=x.get_value().shape[1:])
m = i
m = Dense(4, init=init, activation='tanh')(m)
m = Dense(1, init=init, activation='tanh')(m)
sigma = pm.Normal('sigma', 0, 1, transform=None)
out = pm.Normal('out',
m, 1,
observed=y, transform=None)
return out
with pm.Model() as neural_network:
likelihood = build_ann(input_var, target_var, GaussWeights())
# v_params = pm.variational.advi(
# n=300, learning_rate=.4
# )
# trace = pm.variational.sample_vp(v_params, draws=2000)
start = pm.find_MAP(fmin=scipy.optimize.fmin_powell)
step = pm.HamiltonianMC(scaling=start)
trace = pm.sample(1000, step, progressbar=True)
The model contains normal noise with a fixed std of 1:
out = pm.Normal('out', m, 1, observed=y)
but the dataset does not. It is only natural that the predictive posterior does not match the dataset, they were generated in a very different way. To make it more realistic you could add noise to your dataset, and then estimate sigma:
mu = pm.Deterministic('mu', m)
sigma = pm.HalfCauchy('sigma', beta=1)
pm.Normal('y', mu=mu, sd=sigma, observed=y)
What you are doing right now is similar to taking the output from the network and adding standard normal noise.
A couple of unrelated comments:
out is not the likelihood, it is just the dataset again.
If you use HamiltonianMC instead of NUTS, you need to set the step size and the integration time yourself. The defaults are not usually useful.
Seems like keras changed in 2.0 and this way of combining pymc3 and keras does not seem to work anymore.
How could I obtain raw probability values of the tested sample's resemblance to each one of the N classes (my use case is based on the TensorFlow Mechanics 101 tutorial)?
E.g., instead of running tf.nn.in_top_k(logits, labels, 1), I would like to set up a threshold that returns True in case the tested sample resembles the second label with a probability of >= 0.25.
You can use greater_equal method. For example
threshold = tf.constant(0.25, dtype=tf.float32)
raw_prob = tf.greater_equal(predictions, threshold)
raw_probwill be a tensor of same size as predictions holding True or False. It is also possible to use different thresholds for different classes. Assuming that number of classes is three:
threshold = tf.constant([0.34, 0.25, 0.95], dtype=tf.float32)
raw_prob = tf.greater_equal(predictions, threshold)
I am new to Apache Spark and trying to use the machine learning library to predict some data. My dataset right now is only about 350 points. Here are 7 of those points:
"365","4",41401.387,5330569
"364","3",51517.886,5946290
"363","2",55059.838,6097388
"362","1",43780.977,5304694
"361","7",46447.196,5471836
"360","6",50656.121,5849862
"359","5",44494.476,5460289
Here's my code:
def parsePoint(line):
split = map(sanitize, line.split(','))
rev = split.pop(-2)
return LabeledPoint(rev, split)
def sanitize(value):
return float(value.strip('"'))
parsedData = textFile.map(parsePoint)
model = LinearRegressionWithSGD.train(parsedData, iterations=10)
print model.predict(parsedData.first().features)
The prediction is something totally crazy, like -6.92840330273e+136. If I don't set iterations in train(), then I get nan as a result. What am I doing wrong? Is it my data set (the size of it, maybe?) or my configuration?
The problem is that LinearRegressionWithSGD uses stochastic gradient descent (SGD) to optimize the weight vector of your linear model. SGD is really sensitive to the provided stepSize which is used to update the intermediate solution.
What SGD does is to calculate the gradient g of the cost function given a sample of the input points and the current weights w. In order to update the weights w you go for a certain distance in the opposite direction of g. The distance is your step size s.
w(i+1) = w(i) - s * g
Since you're not providing an explicit step size value, MLlib assumes stepSize = 1. This seems to not work for your use case. I'd recommend you to try different step sizes, usually lower values, to see how LinearRegressionWithSGD behaves:
LinearRegressionWithSGD.train(parsedData, numIterartions = 10, stepSize = 0.001)
I am trying to implement Naive Bayes Classifier using a dataset published by UCI machine learning team. I am new to machine learning and trying to understand techniques to use for my work related problems, so I thought it's better to get the theory understood first.
I am using pima dataset (Link to Data - UCI-ML), and my goal is to build Naive Bayes Univariate Gaussian Classifier for K class problem (Data is only there for K=2). I have done splitting data, and calculate the mean for each class, standard deviation, priors for each class, but after this I am kind of stuck because I am not sure what and how I should be doing after this. I have a feeling that I should be calculating posterior probability,
Here is my code, I am using percent as a vector, because I want to see the behavior as I increase the training data size from 80:20 split. Basically if you pass [10 20 30 40] it will take that percentage from 80:20 split, and use 10% of 80% as training.
function[classMean] = naivebayes(file, iter, percent)
dm = load(file);
for i=1:iter
idx = randperm(size(dm.data,1))
%Using same idx for data and labels
shuffledMatrix_data = dm.data(idx,:);
shuffledMatrix_label = dm.labels(idx,:);
percent_data_80 = round((0.8) * length(shuffledMatrix_data));
%Doing 80-20 split
train = shuffledMatrix_data(1:percent_data_80,:);
test = shuffledMatrix_data(percent_data_80+1:length(shuffledMatrix_data),:);
train_labels = shuffledMatrix_label(1:percent_data_80,:)
test_labels = shuffledMatrix_data(percent_data_80+1:length(shuffledMatrix_data),:);
%Getting the array of percents
for pRows = 1:length(percent)
percentOfRows = round((percent(pRows)/100) * length(train));
new_train = train(1:percentOfRows,:)
new_trin_label = shuffledMatrix_label(1:percentOfRows)
%get unique labels in training
numClasses = size(unique(new_trin_label),1)
classMean = zeros(numClasses,size(new_train,2));
for kclass=1:numClasses
classMean(kclass,:) = mean(new_train(new_trin_label == kclass,:))
std(new_train(new_trin_label == kclass,:))
priorClassforK = length(new_train(new_trin_label == kclass))/length(new_train)
priorClassforK_1 = 1 - priorClassforK
end
end
end
end
First, compute the probability of evey class label based on frequency counts. For a given sample of data and a given class in your data set, you compute the probability of evey feature. After that, multiply the conditional probability for all features in the sample by each other and by the probability of the considered class label. Finally, compare values of all class labels and you choose the label of the class with the maximum probability (Bayes classification rule).
For computing conditonal probability, you can simply use the Normal distribution function.