Finding 3 hourly averages of the data - matlab

In the below code, each y is of 8 min duration. Once I generate the Powerr matrix I have what I Need but How do i do 3 hour averages? Should i do within the for loop or once I generate the Powerr matrix can i still be able to find out the 3 hourly averages of my data? thanks in advance.
fid = fopen([directory '001/listing.txt'],'r');
tline = fgetl(fid);
ii = 0;
while (tline ~= -1)
if (length(tline) == 0)
continue
end
ii = ii + 1;
file_names(ii,:)=tline; % create file names in matlab data worksapace
year(ii) = str2num(tline(11:14));
month(ii) = str2num(tline(15:16));
day(ii) = str2num(tline(17:18));
hour(ii) = str2num(tline(20:21));
min(ii) = str2num(tline(22:23));
sec(ii) = str2num(tline(24:25));
tline = fgetl(fid);
end
fclose(fid);
timestamp = datenum(year,month,day,hour,min,sec);
%--------window applied is Hanning window--------
nfft = 4096; % |
hanning_window = hanning(nfft); % |
%-------------------------------------------------
timestamp = datenum(year,month,day,hour,min,sec);
tic
profile on
warning('off','MATLAB:audiovideo:wavread:functionToBeRemoved');
neglect_the_first_few= 5;
lastfile = 20;
Powerr = zeros(2049,20);
% fr = zeros(2049,1);
count =[];
parfor count = neglect_the_first_few + 1 :lastfile
warning('off','MATLAB:audiovideo:wavread:functionToBeRemoved');
y= [];
% for inputfile = infiles'
fn = [directory '/001/' file_names(count,:)];
[y,fs,nbits] = wavread(fn,'native');
disp(['sampling freq is ',num2str(fs),' hz. length of y is ',num2str(size(y)),'filenumber is ',num2str(count)])
% end
y = y- mean(y);
Y = double(y).*(1.49365435131571e-07);%CONVERSION - volts per bit for 24bit channel
% clear y;
nooverlap =[];%number of overlapped segments set to zero on Nov20th 2017
[Poww,fr] = pwelch(Y,hanning_window,nooverlap,nfft,fs);%no overlap taken into account%
Powerr(:,count) = Poww;
freq(:,count)= fr;
end

Related

Create an iteration that picks n elements from array for calculations and increases by n for the next iteration

I have a matlab script that calculates the hourly thermal load of a refrigerated transport trailer for a day. The ambient temperature used is an array of hourly temperature data for a particular year, thus 8760x1 elements. I want create a for loop or some sort of iteration that picks every 24-hour data from the ambient temp array, thus 1:24, 25:48, etc; perform the calculations and store it in a matrix. So eventually it will result in a 24x365.
clc; clear; close all;
%%
load('Heerlen_TMY');
T_out = T2m(1:24);
T_in = zeros(length(T_out),1);
% T_in(:,1) = -18;
T_in(:,1) = 3;
% T_out(:,1) = 33;
RH = RH(1:24);
dT = (T_out - T_in);
%% Parameters
l_i = 13.36; w_i = 2.50; h_i = 2.50; % Trailer internal parameters
l_e = 13.54; w_e = 2.60; h_e = 2.75; % Trailer external parameters
m = zeros(length(T_out),1); %Initializing cargo mass
m_c = 20.0*1e3; % Total cargo mass[kg]
m_c = [m_c 0.87*m_c 0.75*m_c 0.62*m_c 0.5*m_c 0.37*m_c 0.25*m_c 0.12*m_c];
Delivery = [6 8 10 12 14 16 18 20]; % Delivery time during 24-hr period
On_road = [7 9 11 13 15 17 19 21]; % Driving times in a 24-hr period
m(Delivery)= m_c; % For product load during delivery
m(On_road) = m_c; % For calculating product load on road
%% Transmission load
K = 0.6; %0.4; %Overall heat transfer coefficient
S_i = ((l_i*w_i)+(l_i*h_i)+(w_i*h_i))*2; % Inner surface area;
S_e = ((l_e*w_e)+(l_e*h_e)+(w_e*h_e))*2; % Outer surface area;
S = sqrt(S_i*S_e);
deltaT = zeros(length(T_out),1);
deltaT(5) = dT(5);
deltaT(Delivery)= dT(Delivery); % For product load during delivery
deltaT(On_road) = dT(On_road);
Q_tr = K*S*deltaT.*1e-3;
Q_tr = abs(Q_tr)*1.23;
figure(1)
plot(Q_tr)
%% Precooling
V_a = l_i*w_i*h_i; % Volume payload [m^3]
rho_a = 1.27; % Density of air at 0 degrees [kg/m^3]
c_a = 1.005; % specific heat of air [kJ/kg/K]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Assuming initial temperature inside trailer = ambient temperature
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PreC = zeros(length(T_out),1); % Initializing precooling load
P = 3600; % Precooling duration
PreC(5) = P;
% Q_pre = (c_pt*V_pt*rho_pt + V_a*rho_a*c_a)*dT.*PreC./(3600*24);
Q_pre = (V_a*rho_a*c_a)*dT.*PreC./(3600);
figure(2); plot(Q_pre)
%% Product load
T1 = zeros(length(T_out),1);
T1(:,1) = 5; % Initial loading temperature of product
dT_pro = T1 - T_in;
h_r = 14.67; % heat of respiration [mW/kg]
c_l = 3.81; % Specific heat of dry drugs [kJ/kgK]
Q_pull = m.*c_l.*dT_pro; % loaded products to be cooled to setpoint temp
Q_resp = (h_r*m)./(1e6); % Load caused by chilled perishable products
Q_pro = Q_resp + (abs(Q_pull)./(3600*(length(Delivery)+length(On_road)+1)));
%% Infiltration load
W_d = 2.50; % Door width
H_d = 2.69; % Door height
D = [300 180]; % Loading and delivery duration
Theta_o = zeros(24,1);
Theta_o(Delivery) = D(2);
Theta_o(Delivery(1)) = D(1);
Theta_d = [1 0.25 0.5];
E = 0; % Effectiveness of doorway protective device
D_t = Theta_o/(3600* Theta_d(1));
%%%----------------------------------------------------
% Calculate sensible heat ratio Rs
%%%----------------------------------------------------
h = zeros(length(T_out),2);
y = h;
for k=1:numel(RH)
y(k,1) = Psychrometricsnew('phi',RH(k),'Tdb',T_out(k));
y(k,2) = Psychrometricsnew('phi',90,'Tdb',T_in(k));
end
%% Infiltration load - Method 1
D_f = zeros(length(T_in),1);
for n = 1:length(T_in)
if dT(n) >= 11
D_f1 = 0.5;
else
D_f1 = 0.8;
end
D_f(n)= D_f1;
% disp(D_f1)
end
%%%----------------------------------------------------
% Estimate sensible heat load of infiltration Qs/Ad
%%%----------------------------------------------------
Q_s = 4.5;
R_s = c_a*dT./((y(:,1) - y(:,2)).*1e-3);
q = 0.577*W_d*H_d^(1.5)*Q_s*(1./R_s);
%
Q_inf = q.*D_t.*D_f.*(1-E);
%% Method 2
rho_o = 1.205; rho_i = 1.275;
g = 9.81;
Enth = ((y(:,1) - y(:,2))./1e3);
Fm = (2/(1+(rho_i/rho_o)^(1/3)))^(1.5);
Q_inf_ = 0.221*W_d*H_d*rho_i*sqrt(1-(rho_o/rho_i))*...
sqrt(g*H_d)*Fm*(1-E);
Q_inf_1 = Q_inf_.*Enth.*D_f.*D_t;
%% Total load
% Q_pro = 0; %Q_inf = 0;
% Safety factor of 20% to account for
Q_tot = (Q_tr + Q_pre*1e-3 + Q_pro + Q_inf)*1.2;
Q_tot_1 = (Q_tr + Q_pre*1e-3 + Q_pro + Q_inf_1)*1.2;
% Q_tot = Q_tot*0.9;
figure()
plot(Q_tot)
hold on
plot(Q_tot_1)
As mimocha suggested in the comments, you just want to reshape your 8760x1 matrix of hourly temperatures into a 24x365 matrix, where each column contains the data for one day and each row contains the data for every hour within that day.
This is done by
A = reshape(input, [24, 465]);
where input is your 8760x1 matrix and A is the reshaped array of size 24x365.

Kmeans too many centroids being plotted

I am trying to plot clusters via the MATLAB function kmean but am getting way too many centroids and have no idea why. Here is my code and an example of a figure:
rng(1);
wv_prop = [min_pts(:) slope(:)];
if (isempty(wv_prop)==0)
[idx,C] = kmeans(wv_prop,2);
subplot(3,2,5);
plot(wv_prop(idx==1,1),wv_prop(idx==1,2),'b.','MarkerSize',12);
hold on
plot(wv_prop(idx==2,1),wv_prop(idx==2,2),'r.','MarkerSize',12);
plot(C(:,1),C(:,2),'kx',...
'MarkerSize',15,'LineWidth',3)
Here is an example of the data I use:
wv_prop:
-7.50904246127179e-05 2.52737793199461e-05
-7.64715493632322e-05 -29.2845021783221
-8.16630514296111e-05 -15.5896244315076
-8.60516901697005e-05 3.87325886247646e-05
-9.07390060961131e-05 4.06844795948271e-05
-7.93980060844007e-05 3.72806601486833e-05
-8.08420950480078e-05 3.81372062193057e-05
-8.53045358845788e-05 4.00072285969318e-05
-7.07712622172574e-05 3.55502071296987e-05
-8.02846575361635e-05 3.91085777803079e-05
-8.82904795076420e-05 4.21557386394776e-05
-8.32088783242009e-05 4.08103587885502e-05
-8.17564769131708e-05 4.06201592898485e-05
-8.88574631122910e-05 4.31980154605407e-05
-9.55496137235401e-05 4.55119867638717e-05
-7.11241881995855e-05 3.72772062250438e-05
-8.20641318582800e-05 6.09118479264444e-05
-7.92369664739745e-05 5.86246041439769e-05
-7.61219361068837e-05 5.57318660221894e-05
-8.52918510230295e-05 5.84710267850959e-05
-8.99668387994064e-05 5.84558301867090e-05
-9.62926333243702e-05 5.87762601336998e-05
-7.87678776488358e-05 4.67111894400931e-05
-7.53525297201741e-05 4.13207831828739e-05
-7.71766983561651e-05 3.82625914011195e-05
-9.03499693359608e-05 4.06874790212135e-05
-7.59387077492098e-05 2.92390401569819e-05
-7.97649576465785e-05 32.1683359898974
-8.06408560217508e-05 1.55409105433306e-05
-8.10515208048491e-05 1.31180389653758e-05
-7.70540121076476e-05 9.43353748786386e-06
-7.24001267378072e-05 5.78599898248438e-06
-8.93350436455590e-05 9.61034087028361e-06
-7.97722332494743e-05 4.89104076311932e-06
-8.40022599007737e-05 5.06726288587479e-06
-7.89655937936233e-05 2.44686642783556e-06
-8.58007004774045e-05 4.06628163987085e-06
-7.68775819259902e-05 1.06146142996962e-06
-7.05769224846652e-05 -2.25666633700963e-06
-7.73022200637920e-05 1.34546072255262e-06
-7.65784897728499e-05 1.62917829786978e-06
-7.41548367397790e-05 1.46536230997079e-06
-9.17371298592096e-05 1.17025036839378e-05
-7.35354500231489e-05 4.43710161064086e-06
function [] = Select_Figs(filename,startblock,endblock,startclust,endclust,animal,day)
%Select_Figs - Plots average waveforms, standard deviation, difference over time,
%fitted peak location histogram, mean squared error, k-mean clustered peak location and slope,
%and raw waveforms across selected blocks and clusters,
%saves to folder Selected-Figures-animal-date
%
%Select_Figs(filename,startblock,endblock,startclust,endclust,animal,date)
%
%filename - Sort.mat(e.g. = 'Sort.mat')
%
%startblock- first block (e.g. = 7)
%
%endblock - last block (e.g. = 12)
%
%startclust - first cluster (e.g. = 5)
%
%endclust - last cluster (e.g. = 10)
%
%animal - animal number (e.g. = 12)
%
%date - start of experiment (e.g. = 101617)
%
%Function called by User_Sort.m
Sort = filename;
addpath(pwd);
%Get Sort file
foldername = sprintf('Selected-Figures-%s-%s',animal,day); %Creates dynamic folder name to store figures
mkdir(foldername); %Makes directory
cd(fullfile(foldername)); %Cd to new directory
tvec = 0:.013653333:(.013653333*97); %Time vector
t = tvec(2:end);
for clust = startclust:endclust %Loops through all clusters
fig = cell(1,endblock); %Preallocate # of figures
name = sprintf('Idx_%d',clust); %Individual cluster name
fig{clust} = figure('Visible', 'off'); %Turns figure visibility off
for block = startblock:endblock %Loop through all blocks
wvfrms_avg =Sort.(name)(block).avg;
wvfrms_avg_scaled = (wvfrms_avg*10^6);
wvfrms_std =Sort.(name)(block).standdev;
min_ind = wvfrms_avg_scaled == min(wvfrms_avg_scaled);
min_loc = t(min_ind);
[~,io] = findpeaks(wvfrms_avg_scaled);
leftmin = io<find(wvfrms_avg_scaled==min(wvfrms_avg_scaled));
leftmin = leftmin(leftmin~=0);
rightmin = io>find(wvfrms_avg_scaled==min(wvfrms_avg_scaled));
rightmin = rightmin(rightmin~=0);
if (isempty(wvfrms_avg_scaled)==0)
subplot(3,2,1);
if (isnan(wvfrms_avg_scaled)==0)&((-30<min(wvfrms_avg_scaled))||(min_loc>0.55)||(min_loc<0.3)||(length(io(leftmin))>2)||(length(io(rightmin))>2))
plot(tvec(1:end-1),wvfrms_avg_scaled,'r');
else
plot(tvec(1:end-1),wvfrms_avg_scaled,'b');
end
end
new_wv = wvfrms_avg_scaled(40:end);
[~,locs_scaled] = findpeaks(new_wv);
if isempty(locs_scaled)==1
ind_scaled = max(new_wv);
else
ind_scaled = locs_scaled(1);
end
x1_scaled = new_wv(find(min(wvfrms_avg_scaled)));
y1_scaled = min(wvfrms_avg_scaled);
x2_scaled = ind_scaled;
y2_scaled = new_wv(find(ind_scaled));
slope_scaled= (y2_scaled-y1_scaled)./(x2_scaled-x1_scaled);
if (isnan(wvfrms_avg_scaled)==0)
if ((-30<min(wvfrms_avg_scaled)))
lab = sprintf('Time (ms) \n Peak exceeds amplitude range (%s)',num2str(min(wvfrms_avg_scaled)));
xlabel(lab,'FontSize',8);
ylabel('Mean Voltage (\muV)','FontSize',8);
title('Average Waveform','FontSize',8);
elseif ((min_loc>0.55)||(min_loc<0.3))
lab = sprintf('Time (ms) \n Peak location exceeds range (Time = %s)',num2str(min_loc));
xlabel(lab,'FontSize',8);
ylabel('Mean Voltage (\muV)','FontSize',8);
title('Average Waveform','FontSize',8);
elseif (length(io(leftmin))>2)||(length(io(rightmin))>2)
lab = sprintf('Time (ms) \n Peak limit exceeded (# = %s) Peak = %s',num2str(length(io)),num2str(min(wvfrms_avg_scaled)));
xlabel(lab,'FontSize',8);
ylabel('Mean Voltage (\muV)','FontSize',8);
title('Average Waveform','FontSize',8);
else
lab = sprintf('Time (ms) \n Peak = %s Slope = %s',num2str(min(wvfrms_avg_scaled)),num2str(slope_scaled));
xlabel(lab,'FontSize',8)
ylabel('Mean Voltage (\muV)','FontSize',8);
title('Average Waveform','FontSize',8);
end
end
if (isempty(wvfrms_std)==0&isempty(wvfrms_avg)==0)
subplot(3,2,2);
errorbar(t,wvfrms_avg,wvfrms_std); %Plots errorbars
end
wvfrms_num_text = sprintf(['Time (ms) \n # Waveforms: ' num2str(size(Sort.(name)(block).block,2))]);
xlabel(wvfrms_num_text,'FontSize',8);
ylabel('Mean Voltage (V)','FontSize',8);
title('Average Waveform + STD','FontSize',8);
wvfrms = Sort.(name)(block).block;
for i = 1:size(wvfrms,1)
if isempty(wvfrms)==0
min_pts = min(wvfrms,[],2); %Adds array of min wvfrm points to matrix
slope = zeros(1,size(wvfrms,1));
new = wvfrms(i,:);
new_cut = new(40:end);
[~,locs] = findpeaks(new_cut);
if isempty(locs)==1
ind = max(new_cut);
else
ind = locs(1);
end
x1 = new(find(min_pts(i)));
y1 = min_pts(i);
x2 = ind;
y2 = new(find(ind));
slope(i) = (y2-y1)./(x2-x1);
else
slope(i) = 0;
end
end
bins = 100;
hist_val = (min_pts(:)*10^6);
if isempty(hist_val)==0
%Convert matrix of min points to array and into microvolts
subplot(3,2,3);
histogram(hist_val,bins);
ylabel('Count','FontSize',8);
title('Waveform Peaks','FontSize',8);
cnt = histcounts(hist_val,bins); %Returns bin counts
line_fit = zeros(1,length(cnt)); %Preallocates vector to hold line to fit histogram
for i = 3:length(line_fit)-3
if (cnt(i)<mean(cnt)) %If bin count is less than mean, take mean of 3
cnt(i)=mean([cnt(i-1) cnt(i+1)]); %consecutive bins, set as bin count
end
if (mean([cnt(i-2) cnt(i-1) cnt(i) cnt(i+1) cnt(i+2)])>=mean(cnt)) %If mean of 5 consecutive bins
line_fit(i-1) = (max([cnt(i-2) cnt(i-1) cnt(i) cnt(i+1) cnt(i+2)]));%exceeds bin count, set max,
end %add to line fit vector
end
line_fit(line_fit<=mean(cnt)) = min(cnt)+1; %Set line_fit values less than mean
x = linspace(min(hist_val),max(hist_val),length(line_fit)); %X axis (min - max point of vals)
hold on
plot(x,line_fit,'k','LineWidth',1.5);
assignin('base','hist_val',hist_val);
if (isempty(hist_val)==0)
gm = fitgmdist(hist_val,2,'RegularizationValue',0.1);
warning('off','stats:gmdistribution:FailedToConverge');
comp1 = gm.ComponentProportion(1)*100;
comp2 = gm.ComponentProportion(2)*100;
mean1 = gm.mu(1);
mean2 = gm.mu(2);
hist_leg = sprintf('\\muV \n Component 1 = %0.2f%% Component 2 = %0.2f%% \n Mean 1 = %0.2f Mean 2 = %0.2f',comp1,comp2,mean1,mean2);
xlabel(hist_leg,'FontSize',8);
end
hold off
else
subplot(3,2,3);
hist_val = 0;
plot(hist_val);
end
hist_val = (slope(:)*10^3);
if isempty(hist_val)==0
subplot(3,2,4);
histogram(hist_val,bins);
ylabel('Count');
cnt = histcounts(hist_val,bins); %Returns bin counts
line_fit = zeros(1,length(cnt)); %Preallocates vector to hold line to fit histogram
for i = 3:length(line_fit)-3
if (cnt(i)<mean(cnt)) %If bin count is less than mean, take mean of 3
cnt(i)=mean([cnt(i-1) cnt(i+1)]); %consecutive bins, set as bin count
end
if (mean([cnt(i-2) cnt(i-1) cnt(i) cnt(i+1) cnt(i+2)])>=mean(cnt)) %If mean of 5 consecutive bins
line_fit(i-1) = (max([cnt(i-2) cnt(i-1) cnt(i) cnt(i+1) cnt(i+2)])); %exceeds bin count, set max,
end %add to line fit vector
end
line_fit(line_fit<=mean(cnt)) = min(cnt)+1; %Set line_fit values less than mean
x = linspace(min(hist_val),max(hist_val),length(line_fit)); %X axis (min - max point of vals)
hold on
plot(x,line_fit,'k','LineWidth',1.5);
gm = fitgmdist(hist_val,2,'RegularizationValue',0.1);
warning('off','stats:gmdistribution:FailedToConverge');
comp1 = gm.ComponentProportion(1)*100;
comp2 = gm.ComponentProportion(2)*100;
mean1 = gm.mu(1);
mean2 = gm.mu(2);
title('Waveform Slope','FontSize',8);
hist_leg = sprintf('Slope (m) \n Component 1 = %0.2f%% Component 2 = %0.2f%% \n Mean 1 = %0.2f Mean 2 = %0.2f',comp1,comp2,mean1,mean2);
xlabel(hist_leg,'FontSize',8);
hold off
else
subplot(3,2,4);
hist_val = 0;
plot(hist_val);
end
rng(1);
wv_prop = [min_pts(:) slope(:)];
if (isempty(wv_prop)==0)
[idx,C] = kmeans(wv_prop,2);
subplot(3,2,5);
plot(wv_prop(idx==1,1),wv_prop(idx==1,2),'b.','MarkerSize',12);
hold on
plot(wv_prop(idx==2,1),wv_prop(idx==2,2),'r.','MarkerSize',12);
plot(C(:,1),C(:,2),'kx',...
'MarkerSize',15,'LineWidth',3)
title('Clustered Peak and Slope','FontSize',8);
fig_about = sprintf('BL%s - Cluster %s Block %s', animal,num2str(clust),num2str(block));
figtitle(fig_about);
else
subplot(3,2,5);
wv_prop = 0;
plot(wv_prop);
end
if isempty(wvfrms)==0
[vals] = align_wvs(wvfrms);
if (~isempty(vals))
subplot(3,2,6);
plot(t,vals);
title('Raw Waveforms','FontSize',8);
end
else
subplot(3,2,6);
w = 0;
plot(w);
end
print(fig{clust},['Cluster-' num2str(clust) ' Block-' num2str(block)],'-dpng');
end
end
disp('Done');
end

How to find 3 hourly averages?

In the below code, each y is of 8 min duration. Once I generate the Powerr matrix I have what I Need but How do i do 3 hour averages? Should i do within the for loop or once I generate the Powerr matrix can i still be able to find out the 3 hourly averages of my data? thanks in advance.
tic
profile on
warning('off','MATLAB:audiovideo:wavread:functionToBeRemoved');
neglect_the_first_few= 5;
lastfile = 10;
Powerr = zeros(2049,10);
count =[];
parfor count = neglect_the_first_few + 1 :lastfile
% time_spectrum(timeindex) = timecount;
warning('off','MATLAB:audiovideo:wavread:functionToBeRemoved');
% infiles = find(timestamp >= timecount & timestamp <= (timecount + timestep));
% if ~isempty(infiles)
% if isnan(time_spectrum)
% time_spectrum(timeindex) = NaN
% end
y= [];
% for inputfile = infiles'
fn = [directory '/001/' file_names(count,:)];
[y,fs,nbits] = wavread(fn,'native');
disp(['sampling freq is ',num2str(fs),' hz. length of y is ',num2str(size(y)),'filenumber is ',num2str(count)])
% end
y = y- mean(y);
Y = double(y).*(1.49365435131571e-07);%CONVERSION - volts per bit for 24bit channel
% clear y;
nooverlap =[];%number of overlapped segments set to zero on Nov20th 2017
[Poww,fr] = pwelch(Y,hanning_window,nooverlap,nfft,fs);%no overlap taken into account%
Powerr(:,count) = Poww;
end
fr is independent from the parfor iteration count. So,this variable did not get transferred to the host from workers. Write fr(count)=...
You've done it correctly for Powerr.

Plot graph with 2 variables in matlab

I'm planning to plot a graph of velocity against time using matlab. The change of time is 0.05 and total time 15. When time change, the graph will change and save a figure of that. I had mat file which contained all the data for time and velocity.
E.g, t=0, v=0, plot and save, t=0.05, v=1, plot and save until t=15.
I tried to use v=v+1 (which acts like i++) but failed to read the value of v in 2nd row. Any other method to do so?
Thank You.
The code is
i = 001
dt = t(2,1) - t(1,1);
k = dt*(i-1);
filename1 = 'front_data';
matFileName = sprintf('%s.mat', filename1);
matData = load(matFileName);
t = matData.time;
fv = matData.front_velocity;
fig = figure%('visible', 'off');
s = t(1,1);
fv = fv(1,1);
lot (s,fv,'*')
pic_filename = sprintf('front_data%02d.jpeg', k);
print(fig,pic_filename,'-djpeg')
istart = 002
iend = 301
for i = istart:iend
k = dt*(i-1);
t = t+dt
filename1 = 'front_data';
matFileName = sprintf('%s.mat', filename1);
matData = load(matFileName);
t = matData.time;
fv = matData.front_velocity;
v = fv(1,1);
v = v+1;
h = figure
axis([0 15 0 0.6])
plot(t,v,'*')
pic_filename = sprintf('front_data%02d.jpeg', k);
print(h,pic_filename,'-djpeg')
end
And the example I refer is the [https://www.mathworks.com/matlabcentral/answers/110632-how-to-increment-a-variable]
I reduced your example to the essential parts.
istart = 2;
iend = 301;
counter=istart;
%load data
% filename1 = 'front_data';
% matFileName = sprintf('%s.mat', filename1);
% matData = load(matFileName);
% t = matData.time;
% fv = matData.front_velocity;
%for demonstaration
t=0:.05:15;
fv=rand(size(t));
for i = istart:iend
%update
time = t(istart:counter);
values = fv(istart:counter);
%plot
plot(time,values,'*')
%increase index
counter=counter+1;
end
As you are loading always the same data in the loop you can do it once outside the loop, and for plotting you just update the length of your vector to be plotted. You could also just append the new value to the actual list.

Last plot in subplot becomes over-sized

I am using subplot function of MATLAB. Surprisingly the last plot in each subplot set becomes over-sized. Can anybody help me to resolve this issue? I have experimented with the parameters a little, but no luck. I am not able to post the plot figure.
function plotFluxVariabilityByGene(cRxn,KeggID,geneName)
load iJO1366; % Load the model iJO1366
%Find 'Gene' associated reactions from 'model'
reactions = rxnNamesFromKeggID(model,KeggID);
nCheck = 0; % Initialize counter
% Determine initial subplot dimensions
[R C setSize] = subplotSize(numel(reactions));
for n = 1 : numel(reactions)
% Get the name of nth reaction
rxn = reactions{n};
% Define the array for control reaction fluxes
cRxnArray = getCrxnArray(model,cRxn);
% Initialize storage for lower and upper limit-values
L = []; U = []; Avg = [];
% Get the fluxVariability values
for i = 1 : numel(cRxnArray)
modelMod = changeRxnBounds(model,cRxn,cRxnArray(i),'b');
[L(i) U(i)] = fluxVariability(modelMod,100,'max',{rxn});
Avg(i) = (L(i) + U(i))/2;
%fprintf('mthfcFlux = %f; Li = %f; Ui = %f\n',array(i),L(i),U(i));
end
% adjust the subplot number
nCheck = nCheck + 1;
% Determine the range of n to be saved in one file
if nCheck == 1
start = n;
elseif nCheck == setSize;
stop = n;
end
subplot(R,C,nCheck)
plot(cRxnArray,L,'-r','LineWidth',1); hold on;
plot(cRxnArray,L,'^r','MarkerSize',3,'LineWidth',2);
plot(cRxnArray,U,'-.b','LineWidth',1);
plot(cRxnArray,U,'^b','MarkerSize',2,'LineWidth',2);
plot(cRxnArray,Avg,'-','Color',[0.45,0.45,0.45],'LineWidth',2.5);
% Label X and Y axes
%xlabel([cRxn ' Flux']);
%ylabel(['fluxVariability ' char(rxn)]);
xlabel('Flux');
ylabel('fluxVariability');
hold off;
% Adjust X and Y axes limits
%xmn = min(cRxnArray) - ((max(cRxnArray) - min(cRxnArray))*0.05);
%xmx = max(cRxnArray) + ((max(cRxnArray) - min(cRxnArray))*0.05);
%ymn = min([U L]) - ((max([U L]) - min([U L]))*0.05);
%ymx = max([U L]) + ((max([U L]) - min([U L]))*0.05);
%if xmn ~= xmx
% xlim([xmn xmx]);
%end
%if ymn ~= ymx
% ylim([ymn ymx]);
%end
% Print which reactions are done
fprintf('\n......done for %s',char(rxn));
% If 'setSize' subplots are done then save the set in a file
if nCheck == setSize
saveas(gcf,['TEST/' cRxn 'flux-Vs-' geneName '_fluxVariability' num2str(start) '-' num2str(stop) '.fig']);
saveas(gcf,['TEST/' cRxn 'flux-Vs-' geneName '_fluxVariability' num2str(start) '-' num2str(stop) '.eps']); close(gcf);
% Determine initial subplot dimensions
[R C setSize] = subplotSize(numel(reactions)-n);
% Return nCheck to zero;
nCheck = 0;
end
end
% If nCheck is not equal to 16 then there are subplot that is not saved
% inside the for loop. Let's save it here.
if nCheck ~= setSize
stop = n;
saveas(gcf,['TEST/' cRxn 'flux-Vs-' geneName '_fluxVariability' num2str(start) '-' num2str(stop) '.fig']);
saveas(gcf,['TEST/' cRxn 'flux-Vs-' geneName '_fluxVariability' num2str(start) '-' num2str(stop) '.eps']); close(gcf);
end
fprintf('\nAll done\n');
end
%####################################################
%# Other functions ##
%####################################################
function rxnNames = rxnNamesFromKeggID(model,KeggID)
% Find 'Gene' associated reactions from 'model'
associatedRxns = findRxnsFromGenes(model,KeggID);
% Extract the reaction details from the structure to a cell
rxnDetails = eval(sprintf('associatedRxns.%s',KeggID));
% Extract only the reaction names from the cell
rxnNames = rxnDetails(:,1);
end
%####################################################
function cRxnArray = getCrxnArray(model,cRxn)
% Define the solver
changeCobraSolver('glpk');
% Find solution for the model
sol = optimizeCbModel(model);
% Change the objective of the default model to 'cRxn'
tmpModel = changeObjective(model,cRxn);
% Find slution for the changed model. This gives the maximum and
% minimum possible flux through the reaction 'cRxn' when the model is
% still viable
%solMax = optimizeCbModel(tmpModel,'max');
solMin = optimizeCbModel(tmpModel,'min');
% Create an array of 20 euqally spaced flux values between 'solMin' and
% 'sol.x'
%array = linspace(solMin.f,solMax.f,10);
cRxnArray = linspace(solMin.f,sol.x(findRxnIDs(model,cRxn)),20);
end
%####################################################
function [R C setSize] = subplotSize(remainingPlots)
% Sets number of columns and rows to 3 if total subplot >= 9
if remainingPlots > 7
R = 3; C = 3; setSize = 9;
elseif remainingPlots < 7
R = 2; C = 3; setSize = 6;
elseif remainingPlots < 5
R = 2; C = 2; setSize = 4;
elseif remainingPlots < 4
R = 1; C = 3; setSize = 3;
elseif remainingPlots < 3
R = 1; C = 2; setSize = 2;
end
end
%####################################################
My subplot looks like this:
I suspect its because you are calling subplotSize a second time inside your loop. This could be changing your R and C variables.
I would advise to check the R and C variables at the subplot command on each loop.