breeze Copy lower triangle not working? - scala

Using breeze 0.13, Scala 2.12.3
I would like to create a symmetric matrix by copying the lower triangle to the upper one. Following the instructions in Linear Algebra Cheat Sheet. May be I use the function incorrectly but it seems like the lowerTriangular function is not working correctly. The copy just
val myMtx = breeze.linalg.DenseMatrix((1,-8,-9) , (2,1,-7), (3,5,1))
//myMtx: breeze.linalg.DenseMatrix[Int] =
// 1 -8 -9
// 2 1 -7
// 3 5 1
Copy lower triangle (seems not working)
breeze.linalg.lowerTriangular(myMtx)
// 1 0 0
// 2 1 0
// 3 5 1
Copy upper triangle (not working either)
breeze.linalg.upperTriangular(myMtx)
// 1 -8 -9
// 0 1 -7
// 0 0 1

In this context, "copy" means returns the matrix in a newly allocated memory. This is contrast with a "view" that indexes into the same backing memory.
With that in mind, both lowerTriangular and upperTriangular seem to be working properly in that it returns a new matrix that has the same elements copied from the original matrix.
The task is now to create a new symmetric matrix that is the copy of the lower triangular. One possible way is to compute the element-wise sum of the lower and lower diagonal transpose, and then subtract the extra copy of the diagonal that was computed. The inner diag() returns a view, as described above, as a vector and that vector is then used to create a diagonal matrix with the second diag().
# val sym = lowerTriangular(myMtx) + lowerTriangular(myMtx).t - diag(diag(myMtx))
sym: DenseMatrix[Int] =
1 2 3
2 1 5
3 5 1

Related

Output a matrix size n x m, 1 when the sum of the indices is even, 0 otherwise

I'm attempting the following as a hobby, not as homework. In Computer Programming with MATLAB: J. Michael Fitpatrick and Akos Ledeczi, there is a practice problem that asks this:
Write a function called alternate that takes two positive integers, n and m, as input arguments (the function does not have to check the format of the input) and returns one matrix as an output argument. Each element of the n-by-m output matrix for which the sum of its indices is even is 1.
All other elements are zero.
A previous problem was similar, and I wrote a very simple function that does what it asks:
function A = alternate(n,m)
A(1:n,1:m)=0;
A(2:2:n,2:2:m)=1;
A(1:2:n,1:2:m)=1;
end
Now my question is, is that good enough? It outputs exactly what it asks for, but it's not checking for the sum. So far we haven't discussed nested if statements or anything of that sort, we just started going over very basic functions. I feel like giving it more functionality would allow it to be recycled better for future use.
Great to see you're learning, step 1 in learning any programming language should be to ensure you always add relevant comments! This helps you, and anyone reading your code. So the first improvement would be this:
function A = alternate(n,m)
% Function to return an n*m matrix, which is 1 when the sum of the indices is even
A(1:n,1:m)=0; % Create the n*m array of zeros
A(2:2:n,2:2:m)=1; % All elements with even row and col indices: even+even=even
A(1:2:n,1:2:m)=1; % All elements with odd row and col indicies: odd+odd=even
end
You can, however, make this more concise (discounting comments), and perhaps more clearly relate to the brief:
function A = alternate(n,m)
% Function to return an n*m matrix, which is 1 when the sum of the indices is even
% Sum of row and col indices. Uses implicit expansion (R2016b+) to form
% a matrix from a row and column array
idx = (1:n).' + (1:m);
% We want 1 when x is even, 0 when odd. mod(x,2) is the opposite, so 1-mod(x,2) works:
A = 1 - mod( idx, 2 );
end
Both functions do the same thing, and it's personal preference (and performance related for large problems) which you should use.
I'd argue that, even without comments, the alternative I've written more clearly does what it says on the tin. You don't have to know the brief to understand you're looking for the even index sums, since I've done the sum and tested if even. Your code requires interpretation.
It can also be written as a one-liner, whereas the indexing approach can't be (as you've done it).
A = 1 - mod( (1:n).' + (1:m), 2 ); % 1 when row + column index is even
Your function works fine and output the desired result, let me propose you an alternative:
function A = alternate(n,m)
A = zeros( n , m ) ; % pre-allocate result (all elements at 0)
[x,y] = meshgrid(1:m,1:n) ; % define a grid of indices
A(mod(x+y,2)==0) = 1 ; % modify elements of "A" whose indices verify the condition
end
Which returns:
>> alternate(4,5)
ans =
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
initialisation:
The first line is the equivalent to your first line, but it is the cannonical MATLAB way of creating a new matrix.
It uses the function zeros(n,m).
Note that MATLAB has similar functions to create and preallocate matrices for different types, for examples:
ones(n,m) Create
a matrix of double, size [n,m] with all elements set to 1
nan(n,m) Create a
matrix of double, size [n,m] with all elements set to NaN
false(n,m) Create a
matrix of boolean size [n,m] with all elements set to false
There are several other matrix construction predefined function, some more specialised (like eye), so before trying hard to generate your initial matrix, you can look in the documentation if a specialised function exist for your case.
indices
The second line generate 2 matrices x and y which will be the indices of A. It uses the function meshgrid. For example in the case shown above, x and y look like:
| x = | y = |
| 1 2 3 4 5 | 1 1 1 1 1 |
| 1 2 3 4 5 | 2 2 2 2 2 |
| 1 2 3 4 5 | 3 3 3 3 3 |
| 1 2 3 4 5 | 4 4 4 4 4 |
odd/even indices
To calculate the sum of the indices, it is now trivial in MATLAB, as easy as:
>> x+y
ans =
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
Now we just need to know which ones are even. For this we'll use the modulo operator (mod) on this summed matrix:
>> mod(x+y,2)==0
ans =
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
This result logical matrix is the same size as A and contain 1 where the sum of the indices is even, and 0 otherwise. We can use this logical matrix to modify only the elements of A which satisfied the condition:
>> A(mod(x+y,2)==0) = 1
A =
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
Note that in this case the logical matrix found in the previous step would have been ok since the value to assign to the special indices is 1, which is the same as the numeric representation of true for MATLAB. In case you wanted to assign a different value, but the same indices condition, simply replace the last assignment:
A(mod(x+y,2)==0) = your_target_value ;
I don't like spoiling the learning. So let me just give you some hints.
Matlab is very efficient if you do operations on vectors, not on individual elements. So, why not creating two matrices (e.g. N, M) that holds all the indices? Have a look at the meshgrid() function.
Than you might be able find all positions with an even sum of indices in one line.
Second hint is that the outputs of a logic operation, e.g. B = A==4, yields a logic matrix. You can convert this to a matrix of zeros by using B = double(B).
Have fun!

How to compare vector with a value in matlab?

I have six node (1-6). I have two matrices, "x" and "distance" given below. The distance matrix represents the distance of all the nodes from node 3.
x=[1 2 4 6];
distance=[110 115 0 16 10 2];
I want to make an if condition that should take some action if the distance of any of the nodes in matrix x from node 3 is greater than 13. I tried the following but it doesn't work.
if distance(1,x(1:4))<13
c=222;
end
I can do it using for loop, but i need a shorter command. Regards.
Since the output of distance(1,x(1:end)) < 13 is a vector, your code doesn't work, you can do this:
if ( sum(distance(x) < 13) > 0 )
c = 222;
end

sum matrix using logical matrix - index exceeds matrix dimensions

I have two matrices.
mcaps which is a double 1698 x 2
index_g which is a logical 1698 x 2
When using the line of code below I get the error message that Index exceeds matrix dimensions. I don't see how this is the case though?
tsp = nansum(mcaps(index_g==1, :));
Update
Sorry I should have mentioned that I need the sum of each column in the mcaps vector
** Example of data **
mcaps index_g
5 6 0 0
4 3 0 0
6 5 1 1
4 6 0 1
8 7 0 0
There are two problems here. I missed one. Original answer is below.
What I missed is that when you use the logical index in this way, you are picking out elements of the matrix that may have different numbers of elements in each column, so MATLAB can't return a well formed matrix back to nansum, and so returns a vector. To get around this, use the fact that 0 + anything = 0
% create a mask of values you don't want to sum. Note that since
% index_g is already logical, you don't have to test equal to 1.
mask = ~index_g & isnan(mcaps)
% create a temporary variable
mcaps_to_sum = mcaps;
% change all of the values that you don't want to sum to zero
mcaps_to_sum(mask) = 0;
% do the sum
sum(mcaps_to_sum,1);
This is basically all that the nansum function does internally, is to set all of the NaN values to zero and then call the sum function.
index_g == 1 returns a 1698 x 2 logical matrix, but then you add in an extra dimension with the colon. To sum the columns, use the optional dim input. You want:
tsp = nansum(mcaps(index_g == 1),1);

Remove duplicates appearing next to each other, but keep it if it appears again later

I have a vector that could look like this:
v = [1 1 2 2 2 3 3 3 3 2 2 1 1 1];
that is, the number of equal elements can vary, but they always increase and decrease stepwise by 1.
What I want is an easy way to be left with a new vector looking like this:
v2 = [ 1 2 3 2 1];
holding all the different elements (in the right order as they appear in v), but only one of each. Preferably without looping, since generally my vectors are about 10 000 elements long, and already inside a loop that's taking for ever to run.
Thank you so much for any answers!
You can use diff for this. All you're really asking for is: Delete any element that's equal to the one in front of it.
diff return the difference between all adjacent elements in a vector. If there is no difference, it will return 0. v(ind~=0) will give you all elements that have a value different than zero. The 1 in the beginning is to make sure the first element is counted. As diff returns the difference between elements, numel(diff(v)) = numel(v)-1.
v = [1 1 2 2 2 3 3 3 3 2 2 1 1 1];
ind = [1 diff(v)];
v(ind~=0)
ans =
1 2 3 2 1
This can of course be done in a single line if you want:
v([1, diff(v)]~=0)
You could try using diff which, for a vector X, returns [X(2)-X(1) X(3)-X(2) ... X(n)-X(n-1)] (type help diff for details on this function). Since the elements in your vector always increase or decrease by 1, then
diff(v)
will be a vector (of size one less than v) with zeros and ones where a one indicates a step up or down. We can ignore all the zeros as they imply repeated numbers. We can convert this to a logical array as
logical(diff(v))
so that we can index into v and access its elements as
v(logical(diff(v)))
which returns
1 2 3 2
This is almost what you want, just without the final number which can be added as
[v(logical(diff(v))) v(end)]
Try the above and see what happens!

MATLAB Combine matrices of different dimensions, filling values of corresponding indices

I have two matrices, 22007x3 and 352x2. The first column in each is an index, most (but not all) of which are shared (i.e. x1 contains indices that aren't in x2).
I would like to combine the two matrices into a 22007x4 matrix, such that column 4 is filled in with the values that correspond to particular indices in both original matrices.
For example:
x1 =
1 1 5
1 2 4
1 3 5
2 1 1
2 2 1
2 3 2
x2 =
1 15.5
2 -5.6
becomes
x3 =
1 1 5 15.5
1 2 4 15.5
1 3 5 15.5
2 1 1 -5.6
2 2 1 -5.6
2 3 2 -5.6
I've tried something along the lines of
x3(1:numel(x1),1:3)=x1;
x3(1:numel(x2(:,2)),4)=x2(:,2);
but firstly I get the error
??? Subscripted assignment dimension mismatch.
and then I can't figure out I would fill the rest of it.
An important point is that there are not necessarily an equal number of rows per index in my data.
How might I make this work?
Taking Amro's answer from here
[~, loc] = ismember(x1(:,1), x2(:,1));
ismember's second argument returns the location in x2 where each element of x1 can be found (or 0 if it can't)
a = x2(loc(loc > 0), 2);
get the relevant values using these row indices but excluding the zeros, hence the loc > 0 mask. You have to exclude these as 1, they are not in x2 and 2 you can't index with 0.
Make a new column of default values to stick on the end of x1. I think NaN() is probably better but zeros() is also fine maybe
newCol = NaN(size(x1,1),1)
Now use logical indexing to get the locations of the non zero elements and put a in those locations
newCol(loc > 0) = a
Finnaly stick it on the end
x3 = [x1, newCol]