figure;
ax1 = axes;
figure;
ax2 = axes;
x = 0; y = 0;
while ishandle(ax1) && ishandle(ax2)
x = x + 1;
y = y + 1;
figure(1)
scatter(x,y, 'MarkerEdgeColor', 'red')
hold on
figure(2)
scatter(x,y, 'MarkerEdgeColor', 'blue')
hold on
end
In my script I have multiple figures, which are going to be updated in a loop. The figures have to be displayed, while the script is running. Unfortunately the currently updated figure is always popping in the foreground, which makes it impossible to monitor a certain figure. I understand that the calling of figure(1) and figure(2) causes this behaviour, but I how can I plot to these figures, without bringing the window into foreground?
As mikkola suggested in a comment, you can specify to which axes scatter or plot add data points. However, there is a better method: create a single line object, and update its xdata and ydata properties. This is both faster and more memory efficient. Your code would become:
x = 0; y = 0;
figure;
h1 = plot(x,y,'ro');
figure;
h2 = plot(x,y,'bo');
while ishandle(h1) && ishandle(h2)
x = x + 1;
y = y + 1;
h1.XData(end+1) = x;
h1.YData(end+1) = y;
h2.XData(end+1) = x;
h2.YData(end+1) = y;
drawnow
pause(0.1)
end
I keep a set of rules of thumb for when working with MATLAB handle graphics. These are relevant to this question:
Use figure only to create a new figure, or to bring an existing figure to the front (which you want to avoid in general, but sometimes is necessary).
Always specify with which figure or axes you want to work, by keeping and using their handles. I never rely on gcf or gca (not explicitly nor implicitly). Using the current figure is useful when typing on the command line, but in a script or a function there is the real danger than someone clicks randomly on windows while the function is executing. Creating a window then writing to gcf could end up writing to a different figure (really, I click on random things all the time).
Don't create more objects than necessary. Creating a new line object for every point you plot is wasteful.
Note also that plot(...'o') is equivalent to scatter(...) unless you specify a different color or size for each point. But using the dot size or color to specify additional information is not a good way to convey that information. Read Tufte's "The visual display of quantitative information" if you're interested in learning about effective communication through graphs.
The relevant part can be found in the part of the documentation of scatter that includes the input ax:
scatter(ax,___) plots into the axes specified by ax instead of into
the current axes.
This allows the user to specify an axis handle pointing to which axes should be used for drawing the scatter plot. Thus if you skip using figure in your code and use the ax input instead, you avoid the "bring to front" behavior associated with figure.
You can modify your code as follows:
figure;
ax1 = axes;
figure;
ax2 = axes;
x = 0; y = 0;
while ishandle(ax1) && ishandle(ax2)
x = x + 1;
y = y + 1;
scatter(ax1, x,y, 'MarkerEdgeColor', 'red')
hold on
scatter(ax2, x,y, 'MarkerEdgeColor', 'blue')
hold on
end
Related
I'm working on a script, where I need to show graph of Fixed Point Iteration and want to zoom in where lines are plotting. Graph is done, it is plotting lines on my graph, problem is that I want to see the values which are produced from function from f(x) and g(x). So I "zoom in" from the figure tools and see which values are produced in the graph right now I am doing it manually in the figure, is there any way to automatically zoom in by just giving the x, y axis? so it means when lines are plotting figure will be automatically zoomed like an animation.
clc;
clear all;
clf;
format short g
syms x;
f = #(x) x-cos(x);
g = #(x) cos(x);
dg = matlabFunction(diff(g(x),x));
figure(1)
z = -3:.001:3;
plot(z,z,'-k',z,g(z),'-k',z,0*z,'-r',0*z,g(z),'-r')
hold on;
x = 1.0;
tol =1.0e-15;
px = x;
x = g(x);
line([px,px],[px,x],'color','blue');
line([px,x,],[x,x],'color','blue');
i = 1;
while(abs(px-x)>tol)
px = x;
x = g(x);
line([px,px],[px,x],'color','blue');
line([px,x,],[x,x],'color','blue');
i = i+1;
data = [i x g(x) f(x)]
drawnow
end
This is what I want in my graph lines.
Link
I tested "zoom" function but it is not helping as per my requirement. Also I tried this one but I can't understand there code.
xlim will allow you to set the range of x-values that are shown. Link: xlim
ylim will allow you to set the range of y-values that are shown. Link: ylim
Together, these should allow you to 'zoom' to different parts of your plot. For example, after your first plot command you could include:
plot(z,z,'-k',z,g(z),'-k',z,0*z,'-r',0*z,g(z),'-r') % Already in your code
xlim([0 1.5]);
ylim([0 1.5]);
You could also include these commands in your for loop so that it gradually zooms in.
I need to prevent a specific plot entry from being displayed on a Matlab plot legend.
Sample:
% x and y are any plot data
for i=1:5
plot(x,y);
plot(x2,y2,'PleaseNoLegend!'); % I need to hide this from legend
end
legend('show');
Is there any flag I can set inside the plot command so this specific entry doesn't show up in legend?
You can achieve that by setting the 'HandleVisibility' property to 'off'. Note that this hides the handles of those plots to all functions, not just to legend.
For example,
hold on
for k = 1:3
x = 1:10;
y = rand(1,10);
x2 = x;
y2 = y + 2;
plot(x,y);
plot(x2,y2,'--','HandleVisibility','off'); % Hide from legend
end
legend('show')
produces the graph
You can use the semi-documented function called hasbehavior, that allows you to ignore individual plots in a legend after you issued the plot command.
figure;
hold on;
for i=1:5
plot(x,y);
h = plot(x2,y2);
hasbehavior(h,'legend',false);
end
legend('show');
The fact that it's semi-documented suggests that it could break sooner or later in a newer MATLAB version, so use with care. It might still be a convenient choice for certain applications.
As #stephematician noted, this MATLAB built-in is also unavailable in Octave, which might be another reason why the other answers are preferable.
As Luis Mendo mentions (and I somehow missed this) the handle is hidden to all other functions in his answer, which will be ok in most situations, but an alternative solution which looks identical to the above and doesn't have this effect is:
k_values = 1:3;
h = nan(size(k_values));
x = 1:10;
hold on
for k = k_values
y = rand(size(x));
y2 = y + 2;
h(k) = plot(x,y);
plot(x,y2,'--');
end
hold off
legend(h, strcat('data', num2str(k_values')))
The final command sets the legend entry for each handle returned by the plot(x,y) command. The first argument is a 1x3 array of line handles which will appear in the legend, and the second argument is a 3x5 char matrix where each row is a label.
I was wondering if anyone knew how to do an animation plot of
x = (dataset of 1000 points)
y = (dataset of 1000 points)
plot(x,y)
big problem is these are datasets that i am trying to plot , or x,y coordinates as opposed to a function which I would know how to plot via an animation.
I tried to do frames in a for loop but it gave me dots and didn't join them in a line graph so I couldn't really watch the path being traced out.
code I used was
for i = 1:length(DATASET1)
pause(0.1)
plot(DATASET1(i),DATASET2(i))
draw on
end
If what you want is for the plot to "grow" point by point: the easiest way is to create an empty plot and then update its XData and YData properties at each iteration:
h = plot(NaN,NaN); %// initiallize plot. Get a handle to graphic object
axis([min(DATASET1) max(DATASET1) min(DATASET2) max(DATASET2)]); %// freeze axes
%// to their final size, to prevent Matlab from rescaling them dynamically
for ii = 1:length(DATASET1)
pause(0.01)
set(h, 'XData', DATASET1(1:ii), 'YData', DATASET2(1:ii));
drawnow %// you can probably remove this line, as pause already calls drawnow
end
Here's an example1 obtained with DATASET1 = 1:100; DATASET2 = sin((1:100)/6);
1 In case someone's interested, the figure is an animated gif which can be created by adding the following code (taken from here) within the loop, after the drawnow line:
frame = getframe(1);
im = frame2im(frame);
[imind,cm] = rgb2ind(im,256);
if ii == 1;
imwrite(imind,cm,filename,'gif','Loopcount',inf);
else
imwrite(imind,cm,filename,'gif','WriteMode','append');
end
Looks like you were close. Not sure draw on is any command though.
See if the code here inspires you to solve your case -
%// Sample x and y values assumed for demo.
x = 1:1000;
y = x.^2;
%// Plot starts here
figure,hold on
%// Set x and y limits of the plot
xlim([min(x(:)) max(x(:))])
ylim([min(y(:)) max(y(:))])
%// Plot point by point
for k = 1:numel(x)
plot(x(k),y(k),'-') %// Choose your own marker here
%// MATLAB pauses for 0.001 sec before moving on to execue the next
%%// instruction and thus creating animation effect
pause(0.001);
end
Since R2014b, you can work with annimatedline object (doc and how-to) that is meant to handle animated graphs pretty well. Basically, the annimatedline object has a addpoints function that adds new points to the line without having to redefine the existing points, along with a clearpoints function that clears lines for more complex animations.
Here is an example:
h = animatedline;
axis([0,4*pi,-1,1])
x = linspace(0,4*pi,1000);
y = sin(x);
for k = 1:length(x)
addpoints(h,x(k),y(k));
drawnow
end
So I have a simple loop in MATLAB that does the following:
for p = 1:100
x = 4.*randn(1,100);
y = 7.*randn(1,100);
figure(1)
plot(randn(1,100));
figure(2);
plot(randn(1,100));
end
The x and y are made up, but that is the jist of it. Anyway, when I run this code, not surprisingly, MATLAB will make two figures and plot accordingly. The problem is, I get a sort of 'blinking' between figures when I do this, and it makes the quality of seeing x and y evolve over time poorer.
I discovered a way to make one of the plots smoother like this:
figure(1);
for p = 1:100
x = 4.*randn(1,100);
y = 7.*randn(1,100);
plot(randn(1,100));
drawnow
end
If I do this, then of course figure(1) will plot very smoothly showing x nicely, without figure(1) 'blinking' between plots, but now I cant show figure(2) or y!
How can I plot both those quantities on different figures (not subplots) smoothly without 'blinking'?
EDIT:
Thanks Geodesic for your answer, the solution works, however there is a subtlety that I did not think would be an issue, however it is.
1) I am unable to use 'imagesc' with this solution.
For example,
figure(1);
aone = axes;
figure(2);
atwo = axes;
for p = 1:100
x = 4.*randn(1,100);
y = 7.*rand(10,100);
plot(aone,x);
drawnow;
imagesc(atwo,y);
drawnow;
end
In this case the part with imagesc(atwo, y) crashes.
Your flicker is because you're generating each figure window again and again through the loop, which is forcing the window to come to the foreground each time. Generate the figures first, attach some axes to them, and plot your data to each axis like so:
figure(1);
aone = axes;
figure(2);
atwo = axes;
for p = 1:100
x = 4.*randn(1,100);
y = 7.*randn(1,100);
plot(aone,randn(1,100));
drawnow;
imagesc(y,'Parent',atwo);
drawnow;
end
Edit: functions like plot take an axis argument directly, but imagesc does not. In this particular case you'll need to send a Property Name/Value pair in as an argument. The 'Parent' of the image generated will be our axis atwo (see above).
For p = 1, create the plots you need, using the plot command or the imagesc command. Keep the handle of the resulting graphics object by getting an output argument: for example h = plot(.... or h = imagesc(..... This will be a Handle Graphics lineseries or image object, or something else, depending on the particular plot type you create.
For p = 2:100, don't use the plotting commands directly, but instead update the relevant Data properties of the original Handle Graphics object h. For example, for a lineseries object resulting from a plot command, set its XData and YData properties to the new data. For an image object resulting from an imagesc command, set its CData property to the new image.
If necessary, call drawnow after updating to force a flush of the graphics queue.
I'm trying to create a simple interface for plotting quadratic Lagrange polynomials. For this, you need just 3 points (with each their own x,y,z coordinates), which are then interpolated using the quadratic Lagrange polynomials.
It's easy to make a static version, or even one that lets the user input the 3 points before plotting the curve. But it should also be possible for the user to drag an existing point in the plot window to another position, and then re-plot the curve automatically using the new position of this point!
So in short, the user should be able to drag these black dots to another location. After that (or while dragging), the curve should be updated.
function Interact()
% Interactive stuff here
figure();
hold on;
axis([0 7 0 5])
DrawLagrange([1,1; 3,4; 6,2])
function DrawLagrange(P)
plot(P(:,1), P(:,2), 'ko--', 'MarkerSize', 10, 'MarkerFaceColor', 'k')
t = 0:.1:2;
Lagrange = [.5*t.^2 - 1.5*t + 1; -t.^2 + 2*t; .5*t.^2 - .5*t];
CurveX = P(1,1)*Lagrange(1,:) + P(2,1)*Lagrange(2,:) + P(3,1)*Lagrange(3,:);
CurveY = P(1,2)*Lagrange(1,:) + P(2,2)*Lagrange(2,:) + P(3,2)*Lagrange(3,:);
plot(CurveX, CurveY);
I think I either have to use functions like WindowButtonDownFcn, WindowButtonUpFcn and WindowButtonMotionFcn, or the ImPoint from the Image Processing Toolbox. But how?
[Edit]
It should also work in 3D, since I'd like to generalize this concept to tensor product surfaces.
Ok, I searched for some more information on the ImPoint option from the Image Processing Toolbox, and wrote this script.
Since ImPoint only works for a 2D setting (and I'd like to generalize this to 3D to be able to work with surfaces instead of curves), it is not really an acceptable answer! But somebody might benefit from it, or get an idea how to do this in 3D.
% -------------------------------------------------
% This file needs the Image Processing Toolbox!
% -------------------------------------------------
function Interact(Pos)
% This part is executed when you run it for the first time.
% In that case, the number of input arguments (nargin) == 0.
if nargin == 0
close all;
clear all;
clc;
figure();
hold on;
axis([0 7 0 5])
% I do not know how to do this without global variables?
global P0 P1 P2
% GCA = Get handle for Current Axis
P0 = ImPoint(gca,1,1);
setString(P0,'P0');
P1 = ImPoint(gca,2,4);
setString(P1,'P1');
P2 = ImPoint(gca,6,2);
setString(P2,'P2');
% Call subfunction
DrawLagrange(P0,P1,P2)
% Add callback to each point
addNewPositionCallback(P0,#Interact);
addNewPositionCallback(P1,#Interact);
addNewPositionCallback(P2,#Interact);
else
% If there _is_ some input argument, it has to be the updated
% position of a moved point.
global H1 H2 P0 P1 P2
% Display X and Y coordinates of moved point
Pos
% Important: remove old plots! Otherwise the graph will get messy.
delete(H1)
delete(H2)
DrawLagrange(P0,P1,P2)
end
function DrawLagrange(P0,P1,P2)
P = zeros(3,2);
% Get X and Y coordinates for the 3 points.
P(1,:) = getPosition(P0);
P(2,:) = getPosition(P1);
P(3,:) = getPosition(P2);
global H1 H2
H1 = plot(P(:,1), P(:,2), 'ko--', 'MarkerSize', 12);
t = 0:.1:2;
Lagrange = [.5*t.^2 - 1.5*t + 1; -t.^2 + 2*t; .5*t.^2 - .5*t];
CurveX = P(1,1)*Lagrange(1,:) + P(2,1)*Lagrange(2,:) + P(3,1)*Lagrange(3,:);
CurveY = P(1,2)*Lagrange(1,:) + P(2,2)*Lagrange(2,:) + P(3,2)*Lagrange(3,:);
H2 = plot(CurveX, CurveY);
I added some comments for clarity.
[Edit] In the preview the syntax highlighting doesn't look very good! Should I define the language to be highlighted somewhere?
A better solution (one that does not need any additional toolboxes) is to use events. First step:
H = figure('NumberTitle', 'off');
set(H, 'Renderer', 'OpenGL');
set(H, 'WindowButtonDownFcn', #MouseClick);
set(H, 'WindowButtonMotionFcn', #MouseMove);
set(H, 'WindowScrollWheelFcn', #MouseScroll);
set(H, 'KeyPressFcn', #KeyPress )
The next step is to define the functions like MouseClick, this is the place where you implement how to react to events (e.g. mouse buttons being clicked, keys being pressed).
In the meantime I implemented an interactive B-spline environment in MATLAB, the source code (along with a concise manual) can be downloaded from https://github.com/pjbarendrecht/BsplineLab.
Great question! I've had this problem too and wondered how to solve it before, but never looked into it. My first thought was to use ginput and then minimize the distance to the line and find the closest point. I thought that was a bit of a hack so I looked around. Seems like that's the only reasonable answer out there and was confirmed here with this code as an example.
%minimum absolute differences kick in again
xx = 1:10; %xdata
yy = exp(xx);
plot(xx,yy);
[xm ym] = ginput(1); %xmouse, ymouse
%Engine
[~, xidx] = min(abs(xx-xm)); %closest index
[~, yidx] = min(abs(yy-ym));
x_closest = xx(xidx) %extract
y_closest = yy(yidx)
Not sure how it scales to 3D, but I thought this would be a good start.