Using the Overlay feature in panel but showing only an averaged line - overlay

I have created an overlay of 100 curves. I thought the image looked impressive but one of my reviewers stated that I should only show the averaged line. Meaning, only show a line that is the average of the 100 curves. Is this possible using the xtline feature, or do I need to get deeper into programming code to produce the graphic? Alternatively, it would be great if I could show both (the 100 curves and the averaged curve) in the same graphic.

You don't need anything complicated here. Just calculate the mean across the panel and show it directly. Here is some technique. I am guessing that in your real example with 100 curves a legend is pointless. Note the c(L) and read the help to find what it does.
webuse grunfeld, clear
set scheme s1color
gen log_invest = log(invest)
egen mean_log_invest = mean(log_invest), by(year)
line log_invest year, legend(off) lc(gs12) c(L) || line mean_log_invest year, c(L) scheme(s1color) ytitle(something sensible)

Related

Location based segmentation of objects in an image (in Matlab)

I've been working on an image segmentation problem and can't seem to get a good idea for my most recent problem.
This is what I have at the moment:
Click here for image. (This is only a generic example.)
Is there a robust algorithm that can automatically discard the right square as not belonging to the group of the other four squares (that I know should always be stacked more or less on top of each other) ?
It can sometimes be the case, that one of the stacked boxes is not found, so there's a gap or that the bogus box is on the left side.
Your input is greatly appreciated.
If you have a way of producing BW images like your example:
s = regionprops(BW, 'centroid');
centroids = cat(1, s.Centroid);
xpos = centroids(:,1); should then be the x-positions of the boxes.
From here you have multiple ways to go, depending on whether you always have just one separated box and one set of grouped boxes or not. For the "one bogus box far away, rest closely grouped" case (away from Matlab, so this is unchecked) you could even do something as simple as:
d = abs(xpos-median(xpos));
bogusbox = centroids(d==max(d),:);
imshow(BW);
hold on;
plot(bogusbox(1),bogusbox(2),'r*');
Making something that's robust for your actual use case which I am assuming doesn't consist of neat boxes is another matter; as suggested in comments, you need some idea of how close together the positioning of your good boxes is, and how separate the bogus box(es) will be.
For example, you could use other regionprops measurements such as 'BoundingBox' or 'Extrema' and define some sort of measurement of how much the boxes overlap in x relative to each other, then group using that (this could be made to work even if you have multiple stacks in an image).

How to visualize correlation matrix as a schemaball in Matlab

I have 42 variables and I have calculated the correlation matrix for them in Matlab. Now I would like to visualize it with a schemaball. Does anyone have any suggestions / experiences how this could be done in Matlab? The following pictures will explain my point better:
In the pictures each parabola between variables would mean the strength of correlation between them. The thicker the line is, the more correlation. I prefer the style of picture 1 more than the style in picture 2 where I have used different colors to highlight the strength of correlation.
Kinda finished I guess.. code can be found here at github.
Documentation is included in the file.
The yellow/magenta color (for positive/negative correlation) is configurable, as well as the fontsize of the labels and the angles at which the labels are plotted, so you can get fancy if you want and not distribute them evenly along the perimeter/group some/...
If you want to actually print these graphs or use them outside matlab, I suggest using vector formats (eg eps). It's also annoying that the text resizes when you zoom in/out, but I don't know of any way to fix that without hacking the zoom function :/
schemaball % demo
schemaball(arrayfun(#num2str,1:10,'uni',false), rand(10).^8,11,[0.1587 0.8750],[0.8333 1],2*pi*sin(linspace(0,pi/2-pi/20,10)))
schemaball(arrayfun(#num2str,1:50,'uni',false), rand(50).^50,9)
I finished and submitted my version to the FEX: schemaball and will update the link asap.
There are a some differences with Gunther Struyf's contribution:
You can return the handles to the graphic object for full manual customization
Labels are oriented to allow maximum left-to-rigth readability
The figure stretches to fit labels in, leaving the axes unchanged
Syntax requires only correlations matrix (but allows optional inputs)
Optimized for performance.
Follow examples of demo, custom labels and creative customization.
Note: the first figure was exported with saveas(), all others with export_fig.
schemaball
x = rand(10).^3;
x(:,3) = 1.3*mean(x,2);
schemaball(x, {'Hi','how','is','your','day?', 'Do','you','like','schemaballs?','NO!!'})
h = schemaball;
set(h.l(~isnan(h.l)), 'LineWidth',1.2)
set(h.s, 'MarkerEdgeColor','red','LineWidth',2,'SizeData',100)
set(h.t, 'EdgeColor','white','LineWidth',1)
The default colormap:
To improve on screen rendering you can launch MATLAB with the experimental -hgVersion 2 switch which produces anti/aliased graphics by default now (source: HG2 update | Undocumented Matlab). However, if you try to save the figure, the file will have the usual old anti-aliased rendering, so here's a printscreen image of Gunther's schemaball:
Important update:
You can do this in Matlab now with the FileExchange submission:
http://www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph
There is an exmample by Matlab in here:
http://uk.mathworks.com/examples/matlab/3859-circular-graph-examples
Which gives this kind of beautiful plots:
Coincidentally, Cleve Moler (MathWorks Chief Mathematician) showed an example of just this sort of plot on his most recent blog post (not nearly as beautiful as the ones in your example, and the connecting lines are straight rather than parabolic, but it looks functional). Unfortunately he didn't include the code directly, but if you leave him a comment on the post he's usually very willing to share things.
What might be even nicer for you is that he also applies (and this time includes) code to permute the rows/columns of the array in order to maximize the spatial proximity of highly connected nodes, rather than randomly ordering them around the circumference. You end up with a 'crescent'-shaped envelope of connecting lines, with the thick bit of the crescent representing the most highly connected nodes.
Unfortunately however, I suspect that if you need to enhance his code to get the very narrow, high-resolution lines in your example plots, then MATLAB's currently non-anti-aliased graphics aren't quite up to it yet.
I've recently been experimenting with MATLAB data and the D3 visualization library for similar graphs - there are several related types of circular visualizations you may be interested in and many of them are interactive. Another helpful, well-baked, and freely available option is Circos which is probably responsible for most of the prettier versions of these graphs you've seen in popular press.

Get length of irregular object in a BW or RGB picture and draw it into picture for control

I face a well known problem which I am not able to solve.
I have the picture of a root (http://cl.ly/image/2W3C0a3X0a3Y). From this picture, I would like to know the length of the longest root (1st problem), the portion of the big roots and the small roots in % (say the diameter as an orientation which is the second problem). It is important that I can distinguish between fine and big roots since this is more or less the aim of the study (portion of them compared between different species). The last thing, I would like to draw a line along the measured longest root to check if everything was measured right.
For the length of the longest root, I tried to use regionprops(), which is not optimal since this assumes an oval as basic shape if I got this right.
However, the things I could really need support with are in fact:
How can I get the length of the longest root (start point should be the place where the longest root leaves the main root with the biggest diameter)?
Is it possible to distinguish between fine and big roots and can I get the portion of them? (the coin, the round object in the image is the reference)
Can I draw properties like length and diameter into the picture?
I found out how to draw the centriods of ovals and stuff, but I just dont understand how to do it with the proposed values.
I hope this is no double post and this question does not exists like this somewhere else, if yes, I am sorry for that.
I would like to thank the people on this forum, you do a great job and everybody with a question can be lucky to have you here.
Thank you for the help,
Phillip
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
EDIT
I followed the proposed solution, the code until now is as followed:
clc
clear all
close all
img=imread('root_test.jpg');
labTransformation = makecform('srgb2lab');
labI = applycform(img,labTransformation);
%seperate l,a,b
l = labI(:,:,1);
a = labI(:,:,2);
b = labI(:,:,3);
level = graythresh(l);
bw = im2bw(l);
bw = ~bw;
bw = bwareaopen(bw, 200);
se = strel('disk', 5);
bw2=imdilate(bw, se);
bw2 = imfill(bw2, 'holes');
bw3 =bwmorph(bw2, 'thin', 5);
bw3=double(bw3);
I4 = bwmorph(bw3, 'skel', 200);
%se = strel('disk', 10);%this step is for better visibility of the line
%bw4=imdilate(I4, se);
D = bwdist(I4);
This leads my in the skeleton picture - which is a great progress, thank you for that!!!
I am a little bit out at the point where I have to calculate the distances. How can I explain MatLab that it has to calculate the distance from all the small roots to the main root (how to define this?)? For this I have to work with the diameters first, right?
Could you maybe give the one or the other hint more how to accomplish the distance/length problem?
Thank you for the great help till here!
Phillip
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
EDIT2
Ok, I managed to separate the single root parts. This is not what your edit proposed, but at least something. I have the summed length of all roots as well - not too bad. But even with the (I assume) super easy step by step explanation I have never seen such a tree. I stopped at the point at which I have to select an invisible point - the rest is too advanced for me.
I dont want to waste more of the time and I am very thankful for the help you gave me already. But I suppose I am too MatLab-stupid to accomplish this :)
Thanks! Keep going like this, it is really helpful.
Phillip
For a pre-starting point, I don't see the need for a resolution of 3439x2439 for that image, it doesn't seem to add anything important to the problem, so I simply worked with a resized version of 800x567 (although there should be (nearly) no problem to apply this answer to the larger version). Also, you mention regionprops but I didn't see any description of how you got your binary image, so let us start from the beginning.
I considered your image in the LAB colorspace, then binarized the L channel by Otsu, applied a dilation on this result considering the foreground as black (the same could be done by applying an erosion instead), and finally removed small components. The L channel gives a better representation of your image than the more direct luma formula, leading to an easier segmentation. The dilation (or erosion) is done to join minor features, since there are quite a bit of ramifications that appear to be irrelevant. This produced the following image:
At this point we could attempt using the distance transform combined with grey tone anchored skeleton (see Soille's book on morphology, and/or "Order Independent Homotopic Thinning for Binary and Grey Tone Anchored Skeletons" by Ranwez and Soille). But, since the later is not easily available I will consider something simpler here. If we perform hole filling in the image above followed by thinning and pruning, we get a rough sketch of the connections between the many roots. The following image shows the result of this step composed with the original image (and dilated for better visualization):
As expected, the thinned image takes "shortcuts" due to the hole filling. But, if such step wasn't performed, then we would end up with cycles in this image -- something I want to avoid here. Nevertheless, it seems to provide a decent approximation to the size of the actual roots.
Now we need to calculate the sizes of the branches (or roots). The first thing is deciding where the main root is. This can be done by using the above binary image before the dilation and considering the distance transform, but this will not be done here -- my interest is only showing the feasibility of calculating those lengths. Supposing you know where your main root is, we need to find a path from a given root to it, and then the size of this path is the size of this root. Observe that if we eliminate the branch points from the thinned image, we get a nice set of connected components:
Assuming each end point is the end of a root, then the size of a root is the shortest path to the main root, and the path is composed by a set of connected components in the just shown image. Now you can find the largest one, the second largest, and all the others that can be calculated by this process.
EDIT:
In order to make the last step clear, first let us label all the branches found (open the image in a new tab for better visualization):
Now, the "digital" length of each branch is simply the amount of pixels in the component. You can later translate this value to a "real-world" length by considering the object added to the image. Note that at this point there is no need to depend on Image Processing algorithms at all, we can construct a tree from this representation and work there. The tree is built in the following manner: 1) find the branching point in the skeleton that belongs to the main root (this is the "invisible point" between the labels 15, 16, and 17 in the above image); 2) create an edge from that point to each branch connected to it; 3) assign a weight to the edge according to the amount of pixels needed to travel till the start of the other branch; 4) repeat with the new starting branches. For instance, at the initial point, it takes 0 pixels to reach the beginning of the branches 15, 16, and 17. Then, to reach from the beginning of the branch 15 till its end, it takes the size (number of pixels) of the branch 15. At this point we have nothing else to visit in this path, so we create a leaf node. The same process is repeated for all the other branches. For instance, here is the complete tree for this labeling (the dual representation of the following tree is much more space-efficient):
Now you find the largest weighted path -- which corresponds to the size of the largest root -- and so on.

produce several maps in same figure window in matlab

I would like to generate a figure in matlab which looks like the attached .jpeg:
So, the figure should contain an outline of the world and then 3 other figures looking at the USA, UK, and New Zealand where I can then specify individual locations in each country. How would I achieve this?
Subplots to arrange things, images to create the maps, and lines to connect them to points. To create a complicated subplot structure like that I'd suggest you check out Ben Mitch's panel class. The relevant thing you're looking for is its ability to conveniently divide up and manage subplots. Something like this
p = panel('defer');
p.pack('v', [1/5 3/5 1/5]);
p(1).pack('h',[1/5 2/5 2/5]); % top level, US and New Zealand
p(2).pack('h',[1/5 2/5 2/5]); % mid level
p(3).pack('h',[1/5 3/5 1/5]); % bottom level
p(2,2).select();
image(world_image);
p(1,3).select();
image(new_zealand_image);
p(1,3).select();
image(usa_image);
p(1,1).select();
image(uk_iamge);
Then add a few line commands to show where the submaps link to. Note that I haven't gotten a chance to test the above code yet, but will when I get to work. I can't remember offhand if it likes the 'h' argument within the child panels.

artifacts in processed images

This question is related to my previous post Image Processing Algorithm in Matlab in stackoverflow, which I already got the results that I wanted to.
But now I am facing another problem, and getting some artefacts in the process images. In my original images (stack of 600 images) I can't see any artefacts, please see the original image from finger nail:
But in my 10 processed results I can see these lines:
I really don't know where they come from?
Also if they belong to the camera's sensor why can't I see them in my original images? Any idea?
Edit:
I have added the following code suggested by #Jonas. It reduces the artefact, but does not completely remove them.
%averaging of images
im = D{1}(:,:);
for i = 2:100
im = imadd(im,D{i}(:,:));
end
im = im/100;
imshow(im,[]);
for i=1:100
SD{i}(:,:)=imsubtract(D{i}(:,:),im(:,:))
end
#belisarius has asked for more images, so I am going to upload 4 images from my finger with speckle pattern and 4 images from black background size( 1280x1024 ):
And here is the black background:
Your artifacts are in fact present in your original image, although not visible.
Code in Mathematica:
i = Import#"http://i.stack.imgur.com/5hM3u.png"
EntropyFilter[i, 1]
The lines are faint, but you can see them by binarization with a very low level threshold:
Binarize[i, .001]
As for what is causing them, I can only speculate. I would start tracing from the camera output itself. Also, you may post two or three images "as they come straight from the camera" to allow us some experimenting.
The camera you're using is most likely has a CMOS chip. Since they have independent column (and possibly row) amplifiers, which may have slightly different electronic properties, you can get the signal from one column more amplified than from another.
Depending on the camera, these variability in column intensity can be stable. In that case, you're in luck: Take ~100 dark images (tape something over the lens), average them, and then subtract them from each image before running the analysis. This should make the lines disappear. If the lines do not disappear (or if there are additional lines), use the post-processing scheme proposed by Amro to remove the lines after binarization.
EDIT
Here's how you'd do the background subtraction, assuming that you have taken 100 dark images and stored them in a cell array D with 100 elements:
% take the mean; convert to double for safety reasons
meanImg = mean( double( cat(3,D{:}) ), 3);
% then you cans subtract the mean from the original (non-dark-frame) image
correctedImage = rawImage - meanImg; %(maybe you need to re-cast the meanImg first)
Here is an answer that in opinion will remove the lines more gently than the above mentioned methods:
im = imread('image.png'); % Original image
imFiltered = im; % The filtered image will end up here
imChanged = false(size(im));% To document the filter performance
% 1)
% Compute the histgrams for each column in the lower part of the image
% (where the columns are most clear) and compute the mean and std each
% bin in the histogram.
histograms = hist(double(im(501:520,:)),0:255);
colMean = mean(histograms,2);
colStd = std(histograms,0,2);
% 2)
% Now loop though each gray level above zero and...
for grayLevel = 1:255
% Find the columns where the number of 'graylevel' pixels is larger than
% mean_n_graylevel + 3*std_n_graylevel). - That is columns that contains
% statistically 'many' pixel with the current 'graylevel'.
lineColumns = find(histograms(grayLevel+1,:)>colMean(grayLevel+1)+3*colStd(grayLevel+1));
% Now remove all graylevel pixels in lineColumns in the original image
if(~isempty(lineColumns))
for col = lineColumns
imFiltered(:,col) = im(:,col).*uint8(~(im(:,col)==grayLevel));
imChanged(:,col) = im(:,col)==grayLevel;
end
end
end
imshow(imChanged)
figure,imshow(imFiltered)
Here is the image after filtering
And this shows the pixels affected by the filter
You could use some sort of morphological opening to remove the thin vertical lines:
img = imread('image.png');
SE = strel('line',2,0);
img2 = imdilate(imerode(img,SE),SE);
subplot(121), imshow(img)
subplot(122), imshow(img2)
The structuring element used was:
>> SE.getnhood
ans =
1 1 1
Without really digging into your image processing, I can think of two reasons for this to happen:
The processing introduced these artifacts. This is unlikely, but it's an option. Check your algorithm and your code.
This is a side-effect because your processing reduced the dynamic range of the picture, just like quantization. So in fact, these artifacts may have already been in the picture itself prior to the processing, but they couldn't be noticed because their level was very close to the background level.
As for the source of these artifacts, it might even be the camera itself.
This is a VERY interesting question. I used to deal with this type of problem with live IR imagers (video systems). We actually had algorithms built into the cameras to deal with this problem prior to the user ever seeing or getting their hands on the image. Couple questions:
1) are you dealing with RAW images or are you dealing with already pre-processed grayscale (or RGB) images?
2) what is your ultimate goal with these images. Is the goal to simply get rid of the lines regardless of the quality in the rest of the image that results, or is the point to preserve the absolute best image quality. Are you to perform other processing afterwards?
I agree that those lines are most likely in ALL of your images. There are 2 reasons for those lines ever showing up in an image, one would be in a bright scene where OP AMPs for columns get saturated, thus causing whole columns of your image to get the brightest value camera can output. Another reason could be bad OP AMPs or ADCs (Analog to Digital Converters) themselves (Most likely not an ADC as normally there is essentially 1 ADC for th whole sensor, which would make the whole image bad, not your case). The saturation case is actually much more difficult to deal with (and I don't think this is your problem). Note: Too much saturation on a sensor can cause bad pixels and columns to arise in your sensor (which is why they say never to point your camera at the sun). The bad column problem can be dealt with. Above in another answer, someone had you averaging images. While this may be good to find out where the bad columns (or bad single pixels, or the noise matrix of your sensor) are (and you would have to average pointing the camera at black, white, essentially solid colors), it isn't the correct answer to get rid of them. By the way, what I am explaining with the black and white and averaging, and finding bad pixels, etc... is called calibrating your sensor.
OK, so saying you are able to get this calibration data, then you WILL be able to find out which columns are bad, even single pixels.
If you have this data, one way that you could erase the columns out is to:
for each bad column
for each pixel (x, y) on the bad column
pixel(x, y) = Average(pixel(x+1,y),pixel(x+1,y-1),pixel(x+1,y+1),
pixel(x-1,y),pixel(x-1,y-1),pixel(x-1,y+1))
What this essentially does is replace the bad pixel with a new pixel which is the average of the 6 remaining good pixels around it. The above is an over-simplified version of an algorithm. There are certainly cases where a singly bad pixel could be right next the bad column and shouldn't be used for averaging, or two or three bad columns right next to each other. One could imagine that you would calculate the values for a bad column, then consider that column good in order to move on to the next bad column, etc....
Now, the reason I asked about the RAW versus B/W or RGB. If you were processing a RAW, depending on the build of the sensor itself, it could be that only one sub-pixel (if you will) of the bayer filtered image sensor has the bad OP AMP. If you could detect this, then you wouldn't necessarily have to throw out the other good sub-pixel's data. Secondarily, if you are using an RGB sensor, to take a grayscale photo, and you shot it in RAW, then you may be able to calculate your own grayscale pixels. Many sensors when giving back a grayscale image when using an RGB sensor, will simply pass back the Green pixel as the overall pixel. This is due to the fact that it really serves as the luminescence of an image. This is why most image sensors implement 2 green sub-pixels for every r or g sub-pixel. If this is what they are doing (not ALL sensors do this) then you may have better luck getting rid of just the bad channel column, and performing your own grayscale conversion using.
gray = (0.299*r + 0.587*g + 0.114*b)
Apologies for the long winded answer, but I hope this is still informational to someone :-)
Since you can not see the lines in the original image, they are either there with low intensity difference in comparison with original range of image, or added by your processing algorithm.
The shape of the disturbance hints to the first option... (Unless you have an algorithm that processes each row separately.)
It seems like your sensor's columns are not uniform, try taking a picture without the finger (background only) using the same exposure (and other) settings, then subtracting it from the photo of the finger (prior to other processing). (Make sure the background is uniform before taking both images.)