Voice in TTS Swift - swift

Does anyone know where I can find a list of all the different available languages for Text to speech? e.g. en_GB, en_US e.t.c.?
Also will offering different languages for text to speech require an internet connection?

The method speechVoices in the class AVSpeechSynthesisVoice returns all the currently available voices on the current device.
Devices ship with at least one, often two (one male, one female) high quality voices for the current locale's language (e.g. a US iPhone will have a high quality male en_US voice and a high quality female en_US voice). They also ship with a larger number of lower quality alternate dialect and international voices (e.g. on that US iPhone, en_GB will be present but lower quality - on a GB iPhone it would be the other way around).
Users can choose to download additional high quality voices, but otherwise an internet connection is not required for TTS.

Related

Indoor navigation hardware/software requirements for iOS

I'm developing navigation system for my university as some kind of research activity. I'm using SVGKit to display floor plans. And now I need to provide user locationing service for navigation and tracking. So here's my questions:
1) Do I need some special hardware installed in university (Cisco MSE for example, or some cheaper analogues), or I can apply some software/technologies to our current hardware for server-side user location determining? If I do, what equipment do I need for it? I mean, it would be one unit for the whole university, or one per each floor, or what?
2)
Q: Why doesn't the Redpin iPhone client conform to the iPhone SDK
Agreement? A: Apple does not provide a public API to retrieve WiFi
data. In order to get the iPhone client working we had to use a
private API, which is disallowed by the iPhone SDK Agreement.
(c) http://redpin.org/faq.html Does it mean that RedPin is unacceptable in AppStore, so I can't use it?
3)Does Navizon I.T.S. requires some specific hardware equipment except standart routers?
Thank you all, maybe you can offer me better solutions, I hope. Thanks in advance.
Indoor positioning is a very vast field and many different solutions are available which all use a different combination of hardware/software. Some need no specific hardware to work, others need a very expensive infrastructure to be put in place. In the end, it all depends on the accuracy you are trying to achieve. Here are the most common solutions used, I ordered them by the type of technology used:
Wifi: two main techniques are used here, trilateration and fingerprinting. Both do not require specific hardware if your uni already has deployed access points (APs). Trilateration converts signal strength to distance and then intersect circles (almost exactly like GPS). In general this has poorish accuracy and you need to know the exact position of APs for it to work. Fingerprinting is a pattern matching technique where you first build a wireless map of the environment and then match the measurement against this map.
Bluetooth: same techniques as above can be used with Bluetooth nodes. Of course, there's less Bluetooth nodes than Wifi so you might need to deploy some extra nodes for it to be accurate enough. Same accuracy as Wifi (roughly 5 meters)
Dead reckoning: uses an accelerometer, gyroscope and compass to calculate the speed of heading of the user. Needs to be initialized and calibrated regularly by another absolute positioning technique. Subject to drift so accuracy degrades quickly over time. Upside is its very cheap, no extra hardware or initial survey phase are needed.
UWB: very accurate techniques based on time of flight measurements. Requires expensive hardware for both transmitter and receiver. You can achieve cm accuracy with this but it's probably not what you're after
This is still an field of research so it's not that easy to find something that just works. I suggest contacting the IT department of your university, if they run a Cisco system, I know some of them provide some sort of positioning capabilities but I don't have much details.
As for your iPhone question, any app that accesses the private API to access Wifi measurements will be rejected by the App store, so you won't be able to publish anything that relies on Wifi. You can still use it for research purpose though, you'll just have to figure out the code yourself as there's no official documentation (some unofficial doc is out there though)
Good luck!

Bluetooth LE Profile for reading measured data

I read a lot about Bluetooth LE in the past hours, but I do not really understand how profiles work. I want to pair an iPhone with a self-made device over BTLE.
The device should send measured temperature values, humidity or other values over Bluetooth and the iPhone should read that data.
I read about different profiles in the BTLE specs (even about heart measurement), but how does one proceed, when reading CO-emission for example?
Thanks a lot!
Regards, mary
There are two sides to this: the profile you'll define on your device and the code you'll write to communicate with this profile in your iOS application.
On the device, you'll define a profile with specific services for the measurements you want to gather. There are several standard Bluetooth LE profiles which you can find in a list on the main Bluetooth developer site. These include profiles for temperature, heart rate, and walking cadence, among others, so if you are providing measurements in one of these categories you can make your device provide one of those services and it will be usable with any iOS application that reads from that service.
For values that aren't covered by one of the existing services, such as the humidity readings you mention, you'll need to create your own custom service. You'll just have to define the service characteristics (what type of data you'll provide and how you'll provide it) and give this service a unique identifier, because it's one you're creating and not part of the standard ones laid out by the Bluetooth organization.
How you define these services and characteristics will depend on the specific Bluetooth LE hardware you use for your device. I've done most of my work recently on Bluegiga's BLE112 chip, which combines a low-power microcontroller with a Bluetooth LE transmitter. They have very good tools for defining device profiles and creating matching firmware, and it's reasonably straightforward to set this up on their chips. I can't speak for other manufacturers, but they most likely have something similar.
Once you have a profile defined on your hardware, you'll need to look for devices advertising it and be able to connect to them within your iOS application. You'll use Core Bluetooth for this, and I highly recommend starting with one of Apple's sample applications, such as their Temperature Sensor example. That example uses the standard health thermometer profile, but you can tweak it to find your proprietary services in addition to the temperature readings. You can see how they read and process the binary data returned from the LE device in that example.
I highly recommend watching Apple's two WWDC 2012 session videos on the topic, Session 703 - Core Bluetooth 101 and Session 705 - Advanced Core Bluetooth, because they provide a lot of background on the topic and show practical examples of this in use.

Can a Smartphone read RFID tags from a distance of few feet (NOT NFC)?

Being a bit more specific: I would like to know whether there's a Smartphone that can detect an RFID tag from few feet away using its original HW (no external devices) and OS capabilities.
Any comment/direction to reading material will be highly appreciated.
I think the answer depends on your use of the word "RFID Tag". In the classic sense, a read-only transponder, equivalent to a bar code, the answer is not yet. There are proposals for 2.4 GHz RFID that could use existing WIFI chipsets to identify nearby objects. Nothing standard or accepted is available.
However, based on the application you describe. One potential answer may be to flip how you are thinking of setting this up. If you just need to know if a certian, unique, person is near a spot in the mall, maybe instead of their phone looking for an RFID tag you need a low cost bluetooth sniffer (connected to a low cost computing board) looking for their phone, via bluetooth MAC addresses, within say 5m. As long as the customer has bluetooth enabled, has signed up for your service and your read points are connected to the internet this approach should cover your use case.
Basically the possibility is very low.
Near field refers the the property of RF fields with very close proximity between the devices. In the case of NFC as it applies here the devices are even closer, in what is termed the "Reactive near-field". Moving further away these properties are lost.
From Wikipedia: "Theoretical working distance with compact standard antennas: up to 20 cm (practical working distance of about 4 centimeters)"
I just found this solution:
http://www.ugrokit.com/
I don't have any experience with it.
Any android device with NFC chip and antenna embedded is capable enough to read RFID tags.

Large vocabulary speech recognition in iPhone without internet?

I used Openears which needs dictionary. It is usefull when we mention the word in dictionary. I wanted to convert all words we speak. So I used Nuance’s speech to recognition dragaon SDK. But it communicates with webserver. I want to avoid server communication because of security concerns. Is it possible to convert speech to text for all words we speak as it is in windows mobile without communicating server only in offline mode?
Speech recognition with unlimited vocabulary requires very big computational and memory resources (gigabytes of memory) and thus it's very hard to do that in iPhone on other embedded device. iPhone is 9 times slower than desktop. iPad is easier since it has more powerful CPU.
Google has put very big effort to make their engine work offline for dictation, and still it prefers to send data to the server because it is significantly more accurate.
Because of that most of the solutions running on small devices use limited vocabulary. Though this vocabulary can be large enough so you will not notice that. Usually 500-1000 words is enough to cover most practical situations. You can use OpenEars to recognize such vocabulary.
To train a language model you need texts from your domain (words and expressions). Language model training is described in CMUSphinx tutorial. To use language model you can use the following OpenEars API call:
- (void) changeLanguageModelToFile: (NSString *) languageModelPathAsString
withDictionary: (NSString *) dictionaryPathAsString
See API reference for more details.
You can use OpenEars with such vocabulary and corresponding language model to support free form text entry for your device.
It could be done, but if you are looking for an unlimited vocabulary speech to text convertor, then it is best if the computations are done on a server. The requirements for such a system are probably too great for a system such as a smartphone. The main areas where you will have huge requirements are as follows:
Dictionary to map input speech into text.
Computations for speech recognition algorithms to run.
I believe this is the reason why companies like Google run their speech recognition services over a server and not on the phone.
But if the application was a limited word speech to text, then it might be worth giving it a try.
All the best!
Doesn't pocketsphinx work on iPhone without network connectivity? Aren't there some demo apps floating around like VocalKit
http://www.rajeevan.co.uk/pocketsphinx_in_iphone/ may be helpful.

What is the range of bluetooth and is it strictly 1:1?

Does anyone know what kind of range can you get from the iPhone
bluetooth? Also, would the connection be strictly one to one? I know you
can choose from a number of peers to connect to but once the connection
is established, it seems you can only transfer data between one peer? So
basically, is it possible to create some kind of "multiplayer" experience?
Just answering the range part of your question...
The 10 meter figure for class 2 devices (of which the iPhone is an example) is very much a guideline.
The range of a Bluetooth device is limited by many real world factors. The 2.4 GHz radio frequency used by Bluetooth is strongly absorbed by water. For example, consider an iPhone connected to a Bluetooth mono headset. If the headset is in one ear and the iPhone is in your trouser pocket on the opposite side of your body, then there's a lot of water between the two devices. This will often cause a significant amount of packet loss in practice (you can hear this in the audio being carried). So, in this case, the range is about one meter.
At the opposite extreme, two class 2 devices separated by nothing more than clear air can get ranges of hundreds of meters.
Other factors that influence things are:
Interference - Lots of things use 2.4 GHz. WiFi, for example can cause problems.
Antenna design - Space and cost constraints often mean that the antenna design is sub-optimal. I don't know how good the iPhone is in this respect.
Walls - Generally walls attenuate Bluetooth signals. However, sometimes they are useful reflectors.
Quality of hardware - Some chips work better than others. Even different firmware revisions of the same chip may perform differently. Different versions of the iPhone probably have (or will have) different chips in them.
Protocol - It is possible to work around poor signal quality with error correction and retransmission. Even if the iPhone SDK forces you to use a particular protocol, careful design of your application can make a difference.
So, in summary, you should probably do some real world tests.
The connection is one-to-one, but you can create an adhoc network with one of the phones acting as the master/coordinator. The other phones would route all their communication through the master/coordinator.
One device can theoretically connect to 7 devices. according to the master-slave role, the device can multiplex between each of them giving the user an impression that you are connected to all of them simultaneously. Bluetooth specification does not stop you from doing that.This is theory.
Now for the iphone, whether it can connect to to more than one device can only be answered by apple or someone who knows the iphone bluetooth API. But I am pretty sure the bluetooth chip inside iphone should be able to connect to more than one device.
Range is essentially going to be good enough for a normal sized room to be covered. It can be longer or shorter depending on environmental circumstances, but remember that bluetooth was created to implement short range connections.
A bluetooth device can be part of a piconet of eight devices, one master and up to seven slaves. The slaves cannot communicate with each other, they must talk through the master, think of a star topology with the master in the center. The iPhone SDK has a GameKit framework that can be used to create the network for multiplayer games. Go to developer.apple.com at look at the GKTank and GKRocket sample code to see how it's used. These games only support two players, but the GameKit framework supports more. Look at the app store and you will see games that have four or more players.
Hope this helps to get started.
Apple iPhone 3G has a Class 2 bluetooth module. Class 2 Bluetooth devices have a communication range of 10 meters.
At a given instance a device can connect to just one device because it follows a master/slave communication model. But still we can perform a multiplexing. So we can virtually connect to more than 1 device and by rapidly changing the connected device.
I found a good article here. It explains bluetooth very well.
According to the my knowledge, multicasting is not impossible with bluetooth. So gaining a multiplayer experience is NOT impossible.
The bluetooth in the iPhone is Class-2, with a 10-meter range, approximately.
Unfortunately I can't answer the other parts of your question.
One device can be connected up to 8 others. It all depends on the iPhone bluetooth API (which I don't know anything about), but with Bluetooth itself you could then send data to multiple devices.
I tether my iPhone to my laptop over bluetooth every day, and I seem to remember having done that at the same time as using a bluetooth headset. YMMV.
It’s the latest incarnation of Bluetooth, the wireless device-to-device technology that allows your phone to talk to headsets, car stereos, keyboards and other devices directly, without the need for a router or shared wireless network.