Akka-http: connect to websocket on localhost - scala

I am trying to connect to some server through websocket on localhost. When I try to do it in JS by
ws = new WebSocket('ws://localhost:8137');
it succeeds. However, when I use akka-http and akka-streams I get "connection failed" error.
object Transmitter {
implicit val system: ActorSystem = ActorSystem()
implicit val materializer: ActorMaterializer = ActorMaterializer()
import system.dispatcher
object Rec extends Actor {
override def receive: Receive = {
case TextMessage.Strict(msg) =>
Log.info("Recevied signal " + msg)
}
}
// val host = "ws://echo.websocket.org"
val host = "ws://localhost:8137"
val sink: Sink[Message, NotUsed] = Sink.actorRef[Message](system.actorOf(Props(Rec)), PoisonPill)
val source: Source[Message, NotUsed] = Source(List("test1", "test2") map (TextMessage(_)))
val flow: Flow[Message, Message, Future[WebSocketUpgradeResponse]] =
Http().webSocketClientFlow(WebSocketRequest(host))
val (upgradeResponse, closed) =
source
.viaMat(flow)(Keep.right) // keep the materialized Future[WebSocketUpgradeResponse]
.toMat(sink)(Keep.both) // also keep the Future[Done]
.run()
val connected: Future[Done.type] = upgradeResponse.flatMap { upgrade =>
if (upgrade.response.status == StatusCodes.SwitchingProtocols) {
Future.successful(Done)
} else {
Future.failed(new Exception(s"Connection failed: ${upgrade.response.status}")
}
}
def test(): Unit = {
connected.onComplete(Log.info)
}
}
It works completely OK with ws://echo.websocket.org.
I think attaching code of my server is reasonless, because it works with JavaScript client and problem is only with connection, however if you would like to look at it I may show it.
What am I doing wrong?

I have tested your client implementation with a websocket server from akka documentation,
and I did not get any connection error. Your websocket client connects successfully. That is why I am guessing the problem is with your server implementation.
object WebSocketServer extends App {
implicit val system = ActorSystem()
implicit val materializer = ActorMaterializer()
import Directives._
val greeterWebSocketService = Flow[Message].collect {
case tm: TextMessage => TextMessage(Source.single("Hello ") ++ tm.textStream)
}
val route =
get {
handleWebSocketMessages(greeterWebSocketService)
}
val bindingFuture = Http().bindAndHandle(route, "localhost", 8137)
println(s"Server online at http://localhost:8137/\nPress RETURN to stop...")
StdIn.readLine()
import system.dispatcher // for the future transformations
bindingFuture
.flatMap(_.unbind()) // trigger unbinding from the port
.onComplete(_ => system.terminate()) // and shutdown when done
}
By the way, I noticed that your actor's receive method does not cover all possible messages. According to that akka issue,
every message, even very small, can end up as Streamed. If you want to print all text messages a better implementation of the actor would be:
object Rec extends Actor {
override def receive: Receive = {
case TextMessage.Strict(text) ⇒ println(s"Received signal $text")
case TextMessage.Streamed(textStream) ⇒ textStream.runFold("")(_ + _).foreach(msg => println(s"Received streamed signal: $msg"))
}
}
Please find a working project on my github.

I found the solution: the server I used was running on IPv6 (as ::1), but akka-http treats localhost as 127.0.0.1 and ignores ::1. I had to rewrite server to force it to use IPv4 and it worked.

Related

How to disable the buffering of messages on an Akka WebSocket server?

I have a very simple Akka WebSocket server that pushes lines from a file to a connected client with an interval of 400ms per line. Everything works fine, except for the fact that the web server seems to buffer messages for about a minute before broadcasting them.
So when a client connects, I see at the server end that every 400ms a line is read and pushed to the Sink, but on the client side I get nothing for a minute and then a burst of about 150 messages (corresponding to a minute of messages).
Is there a setting that I'm overlooking?
object WebsocketServer extends App {
implicit val actorSystem = ActorSystem("WebsocketServer")
implicit val materializer = ActorMaterializer()
implicit val executionContext = actorSystem.dispatcher
val file = Paths.get("websocket-server/src/main/resources/EURUSD.txt")
val fileSource =
FileIO.fromPath(file)
.via(Framing.delimiter(ByteString("\n"), Int.MaxValue))
val delayedSource: Source[Strict, Future[IOResult]] =
fileSource
.map { line =>
Thread.sleep(400)
println(line.utf8String)
TextMessage(line.utf8String)
}
def route = path("") {
extractUpgradeToWebSocket { upgrade =>
complete(upgrade.handleMessagesWithSinkSource(
Sink.ignore,
delayedSource)
)
}
}
val bindingFuture = Http().bindAndHandle(route, "localhost", 8080)
bindingFuture.onComplete {
case Success(binding) ⇒
println(s"Server is listening on ws://localhost:8080")
case Failure(e) ⇒
println(s"Binding failed with ${e.getMessage}")
actorSystem.terminate()
}
}
So the approach with Thread.sleep(400) was wrong. I should've used the .throttle mechanic on sources:
val delayedSource: Source[Strict, Future[IOResult]] =
fileSource
.throttle(elements = 1, per = 400.millis)
.map { line =>
println(line.utf8String)
TextMessage(line.utf8String)
}
This fixed the issue.

Scala http client does not reuse connections

in Scala, I have an akka http client class with some local binding:
class AkkaConPoolingHttpClient(
override val timeout: Option[FiniteDuration] = None,
val localBinding: Option[InetSocketAddress] = None,
val userAgentHeader: Option[String] = None)(
implicit val config: HttpClient.Config,
val system: ActorSystem,
val materializer: Materializer)
extends AkkaHttpClient {
protected val http = Http()
override def dispatch(request: HttpRequest): Future[HttpResponse] = {
val effectivePort = request.uri.effectivePort
val connection =
http.outgoingConnection(
request.uri.authority.host.address(),
port = effectivePort,
localAddress = localBinding)
val preparedRequest = userAgentHeader match {
case Some(userAgent) => fixUri(request.withHeaders(request.headers ++ Seq(headers.`User-Agent`(userAgent))))
case None => fixUri(request)
}
Source.single(preparedRequest) via connection runWith Sink.head
}
object AkkaConPoolingHttpClient {
private def fixUri(request: HttpRequest): HttpRequest =
request.withUri(request.uri.toRelative)
}
and I'm trying to see if it reuses the connections and it seems it doesn't:
val connectionCount = new AtomicInteger()
val testServerFuture = Http().bind("127.0.0.1", 0).to {
Sink.foreach { incomingConnection =>
connectionCount.incrementAndGet()
incomingConnection.flow.join(Flow[HttpRequest].map(_ => HttpResponse())).run()
}
}.run()
val testServerPort = Await.result(testServerFuture, defaultExpectTimeout)
.localAddress.getPort
val address = "127.0.0.1"
val addr = Some(new InetSocketAddress(address, 0))
val client = new AkkaConPoolingHttpClient(localBinding = addr)
// Send some requests concurrently
val requests = List(
Get(s"http://127.0.0.1:$testServerPort/1"),
Get(s"http://127.0.0.1:$testServerPort/2"),
Get(s"http://127.0.0.1:$testServerPort/3"))
val responses = Await.result(
Future.sequence(requests.map(client.sendRequest)),
defaultExpectTimeout)
// Send some more requests -- the connections from before should be reused
Thread.sleep(500)
val responses2 = Await.result(
Future.sequence(requests.map(client.sendRequest)),
defaultExpectTimeout)
// Usually this is "3", occasionally "4".
connectionCount.get() must beLessThanOrEqualTo(4)
Unfortunately, the test fails, connectionCount.get() has 6 connections. Why isn't it reuse the connections? what's wrong with this code?
I also tried with:
val effectivePort = request.uri.effectivePort
val clientSettings = ClientConnectionSettings(system).withSocketOptions(SO.ReuseAddress(true) :: Nil)
val connectionFlow: Flow[HttpRequest, HttpResponse, Future[Http.OutgoingConnection]] =
Http().outgoingConnection(
request.uri.authority.host.address(),
port = effectivePort,
localAddress = localBinding,
settings = clientSettings
)
..................
Source.single(preparedRequest)
.via(connectionFlow)
.runWith(Sink.head)
But I still have 6 connections in my test...
Problem
The problem is rooted in the fact that you are creation a new connection for each request. The client code is actually quite clear:
Source.single(preparedRequest) via connection runWith Sink.head
Each request is being sent through a newly instantiated connection. This is due to a general design flaw where you are getting the address from the request:
val connection =
http.outgoingConnection(
request.uri.authority.host.address(), //address comes from request
port = effectivePort,
localAddress = localBinding)
It would be more efficient to establish the address once (ensuring a single Connection), and then each Request would just need the path.
Solution
To use a single connection you'll have to create a single Flow and send all of your requests through that, as described here.

Echo simple HTTP server with Akka Http in Scala

I am developing a simple HTTP server using Akka-Http in Scala.
My code is as given below:
object HttpServer extends App {
override def main(args: Array[String]): Unit = {
implicit val system = ActorSystem("my-system")
implicit val materializer = ActorMaterializer()
implicit val executionContext = system.dispatcher
val route : Route = post {
path("echo") {
val json = ???
complete((StatusCodes.OK, json))
}
}
val bindingFuture = Http().bindAndHandle(route, "localhost", 8080)
println(s"Server online at http://localhost:8080/\nPress RETURN to stop...")
StdIn.readLine()
bindingFuture.flatMap(_.unbind())
port.onComplete(_ => system.terminate())
}
}
I do not know Scala enough yet. For that, I need some help.
I do not know how I can get JSON from Http POST body to give back that json to client.
You only need to add an extractor to your route definition:
val route : Route = post {
path("echo") {
entity(as[String]) { json =>
complete(json)
}
}
Note that you don't need to set the status code explicitly, as akka-http will automatically set status 200 OK for you when you pass a value to complete

How to use Akka-HTTP client websocket send message

I'm trying client-side websocket by following doc at webSocketClientFlow.
sample code is:
import akka.actor.ActorSystem
import akka.Done
import akka.http.scaladsl.Http
import akka.stream.ActorMaterializer
import akka.stream.scaladsl._
import akka.http.scaladsl.model._
import akka.http.scaladsl.model.ws._
import scala.concurrent.Future
object WebSocketClientFlow {
def main(args: Array[String]) = {
implicit val system = ActorSystem()
implicit val materializer = ActorMaterializer()
import system.dispatcher
// Future[Done] is the materialized value of Sink.foreach,
// emitted when the stream completes
val incoming: Sink[Message, Future[Done]] =
Sink.foreach[Message] {
case message: TextMessage.Strict =>
println(message.text)
}
// send this as a message over the WebSocket
val outgoing = Source.single(TextMessage("hello world!"))
// flow to use (note: not re-usable!)
val webSocketFlow = Http().webSocketClientFlow(WebSocketRequest("ws://echo.websocket.org"))
// the materialized value is a tuple with
// upgradeResponse is a Future[WebSocketUpgradeResponse] that
// completes or fails when the connection succeeds or fails
// and closed is a Future[Done] with the stream completion from the incoming sink
val (upgradeResponse, closed) =
outgoing
.viaMat(webSocketFlow)(Keep.right) // keep the materialized Future[WebSocketUpgradeResponse]
.toMat(incoming)(Keep.both) // also keep the Future[Done]
.run()
// just like a regular http request we can access response status which is available via upgrade.response.status
// status code 101 (Switching Protocols) indicates that server support WebSockets
val connected = upgradeResponse.flatMap { upgrade =>
if (upgrade.response.status == StatusCodes.SwitchingProtocols) {
Future.successful(Done)
} else {
throw new RuntimeException(s"Connection failed: ${upgrade.response.status}")
}
}
// in a real application you would not side effect here
connected.onComplete(println)
closed.foreach(_ => println("closed"))
}
}
after had connection upgraded, how to use the connection send message to websocket server side?
I noticed from the doc:
The Flow that is returned by this method can only be materialized once. For each request a new flow must be acquired by calling the method again.
still confused, why we need construct the flow many times since an upgraded connection alrady ready.
You can create an actor based source and send new messages over the established websocket connection.
val req = WebSocketRequest(uri = "ws://127.0.0.1/ws")
val webSocketFlow = Http().webSocketClientFlow(req)
val messageSource: Source[Message, ActorRef] =
Source.actorRef[TextMessage.Strict](bufferSize = 10, OverflowStrategy.fail)
val messageSink: Sink[Message, NotUsed] =
Flow[Message]
.map(message => println(s"Received text message: [$message]"))
.to(Sink.ignore)
val ((ws, upgradeResponse), closed) =
messageSource
.viaMat(webSocketFlow)(Keep.both)
.toMat(messageSink)(Keep.both)
.run()
val connected = upgradeResponse.flatMap { upgrade =>
if (upgrade.response.status == StatusCodes.SwitchingProtocols) {
Future.successful(Done)
} else {
throw new RuntimeException(s"Connection failed: ${upgrade.response.status}")
}
}
ws ! TextMessage.Strict("Hello World")
ws ! TextMessage.Strict("Hi")
ws ! TextMessage.Strict("Yay!")
`

akka streams over tcp

Here is the setup: I want to be able to stream messages (jsons converted to bytestrings) from a publisher to a remote server subscriber over a tcp connection.
Ideally, the publisher would be an actor that would receive internal messages, queue them and then stream them to the subscriber server if there is outstanding demand of course. I understood that what is necessary for this is to extend ActorPublisher class in order to onNext() the messages when needed.
My problem is that so far I am able just to send (receive and decode properly) one shot messages to the server opening a new connection each time. I did not manage to get my head around the akka doc and be able to set the proper tcp Flow with the ActorPublisher.
Here is the code from the publisher:
def send(message: Message): Unit = {
val system = Akka.system()
implicit val sys = system
import system.dispatcher
implicit val materializer = ActorMaterializer()
val address = Play.current.configuration.getString("eventservice.location").getOrElse("localhost")
val port = Play.current.configuration.getInt("eventservice.port").getOrElse(9000)
/*** Try with actorPublisher ***/
//val result = Source.actorPublisher[Message] (Props[EventActor]).via(Flow[Message].map(Json.toJson(_).toString.map(ByteString(_))))
/*** Try with actorRef ***/
/*val source = Source.actorRef[Message](0, OverflowStrategy.fail).map(
m => {
Logger.info(s"Sending message: ${m.toString}")
ByteString(Json.toJson(m).toString)
}
)
val ref = Flow[ByteString].via(Tcp().outgoingConnection(address, port)).to(Sink.ignore).runWith(source)*/
val result = Source(Json.toJson(message).toString.map(ByteString(_))).
via(Tcp().outgoingConnection(address, port)).
runFold(ByteString.empty) { (acc, in) ⇒ acc ++ in }//Handle the future
}
and the code from the actor which is quite standard in the end:
import akka.actor.Actor
import akka.stream.actor.ActorSubscriberMessage.{OnComplete, OnError}
import akka.stream.actor.{ActorPublisherMessage, ActorPublisher}
import models.events.Message
import play.api.Logger
import scala.collection.mutable
class EventActor extends Actor with ActorPublisher[Message] {
import ActorPublisherMessage._
var queue: mutable.Queue[Message] = mutable.Queue.empty
def receive = {
case m: Message =>
Logger.info(s"EventActor - message received and queued: ${m.toString}")
queue.enqueue(m)
publish()
case Request => publish()
case Cancel =>
Logger.info("EventActor - cancel message received")
context.stop(self)
case OnError(err: Exception) =>
Logger.info("EventActor - error message received")
onError(err)
context.stop(self)
case OnComplete =>
Logger.info("EventActor - onComplete message received")
onComplete()
context.stop(self)
}
def publish() = {
while (queue.nonEmpty && isActive && totalDemand > 0) {
Logger.info("EventActor - message published")
onNext(queue.dequeue())
}
}
I can provide the code from the subscriber if necessary:
def connect(system: ActorSystem, address: String, port: Int): Unit = {
implicit val sys = system
import system.dispatcher
implicit val materializer = ActorMaterializer()
val handler = Sink.foreach[Tcp.IncomingConnection] { conn =>
Logger.info("Event server connected to: " + conn.remoteAddress)
// Get the ByteString flow and reconstruct the msg for handling and then output it back
// that is how handleWith work apparently
conn.handleWith(
Flow[ByteString].fold(ByteString.empty)((acc, b) => acc ++ b).
map(b => handleIncomingMessages(system, b.utf8String)).
map(ByteString(_))
)
}
val connections = Tcp().bind(address, port)
val binding = connections.to(handler).run()
binding.onComplete {
case Success(b) =>
Logger.info("Event server started, listening on: " + b.localAddress)
case Failure(e) =>
Logger.info(s"Event server could not bind to $address:$port: ${e.getMessage}")
system.terminate()
}
}
thanks in advance for the hints.
My first recommendation is to not write your own queue logic. Akka provides this out-of-the-box. You also don't need to write your own Actor, Akka Streams can provide it as well.
First we can create the Flow that will connect your publisher to your subscriber via Tcp. In your publisher code you only need to create the ActorSystem once and connect to the outside server once:
//this code is at top level of your application
implicit val actorSystem = ActorSystem()
implicit val actorMaterializer = ActorMaterializer()
import actorSystem.dispatcher
val host = Play.current.configuration.getString("eventservice.location").getOrElse("localhost")
val port = Play.current.configuration.getInt("eventservice.port").getOrElse(9000)
val publishFlow = Tcp().outgoingConnection(host, port)
publishFlow is a Flow that will input ByteString data that you want to send to the external subscriber and outputs ByteString data that comes from subscriber:
// data to subscriber ----> publishFlow ----> data returned from subscriber
The next step is the publisher Source. Instead of writing your own Actor you can use Source.actorRef to "materialize" the Stream into an ActorRef. Essentially the Stream will become an ActorRef for us to use later:
//these values control the buffer
val bufferSize = 1024
val overflowStrategy = akka.stream.OverflowStrategy.dropHead
val messageSource = Source.actorRef[Message](bufferSize, overflowStrategy)
We also need a Flow to convert Messages into ByteString
val marshalFlow =
Flow[Message].map(message => ByteString(Json.toJson(message).toString))
Finally we can connect all of the pieces. Since you aren't receiving any data back from the external subscriber we'll ignore any data coming in from the connection:
val subscriberRef : ActorRef = messageSource.via(marshalFlow)
.via(publishFlow)
.runWith(Sink.ignore)
We can now treat this stream as if it were an Actor:
val message1 : Message = ???
subscriberRef ! message1
val message2 : Message = ???
subscriberRef ! message2