spark-jobServer 0.8.x SQL examples - spark-jobserver

I have installed spark-observer v 0.8.0 with Scala 2.11. I am able to run examples from job-server-tests. However Im unable to find any examples related to running SQL ( load some file/create temporary table and then run SQL against this table). Do I run job-server or job-server-extras? Im running job-server using SBT.
sbt>reStart
Any help would be greatly appreciated.

Related

Snowpark connection errors with 0.6.0 jar

I am trying to use snowpark(0.6.0) via Jupiter notebooks(after installing Scala almond kernel). I am using Windows laptop. Had to change the examples here a bit to work around windows. Following documentation here
https://docs.snowflake.com/en/developer-guide/snowpark/quickstart-jupyter.html
Ran into this error
java.lang.NoClassDefFoundError: Could not initialize class com.snowflake.snowpark.Session$
ammonite.$sess.cmd5$Helper.<init>(cmd5.sc:6)
ammonite.$sess.cmd5$.<init>(cmd5.sc:7)
ammonite.$sess.cmd5$.<clinit>(cmd5.sc:-1)
Also tried earlier with IntelliJ IDE,got bunch of errors with missing dependencies for log4j etc.
Can I get help.
Have not set it up in Widows but only with Linux.
You have to do the setup steps for each notebook that is going to use Snowpark (part from installing the kernel).
It's important to make sure you are using a unique folder for each notebook, as in step 2 in the guide.
What was the output of the import $ivy.com.snowflake:snowpark:0.6.0?

Jupyter for Scala with spylon-kernel without having to install Spark

Based on web search and as highly recommended, I am trying to run Jupyter on my local for Scala (using spylon-kernel).
I was able to create a notebook but while trying to run/play a Scala code snippet, I see this message initializing scala interpreter and in the console, I see this error:
ValueError: Couldn't find Spark, make sure SPARK_HOME env is set or Spark is in an expected location (e.g. from homebrew installation).
I am not planning to install Spark. Is there a way I can still use Jupyter for Scala without installing Spark?
I am new to Jupyter and the ecosystem. Pardon me for the amateur question.
Thanks

Can I use Jupyter lab to interact with databricks spark cluster using Scala?

Can I use Jupyter lab to connect to a databricks spark cluster that is hosted remotely?
There are KB articles about databricks connect, which allows a scala or java client-process to control a spark cluster. Here is an example:
https://docs.databricks.com/dev-tools/databricks-connect.html
While that KB article covers a lot of scenarios, it doesn't explain how to use Jupyter notebooks to interact with a databricks cluster using the Scala programming language. I'm familiar with scala programming, but not Python.
Yes, it appears to be possible although it is not well documented. These steps worked for me on windows. I used databricks v.7.1 with scala 2.12.10.
Step 1. Install anaconda : https://repo.anaconda.com/
Step 2. Because python seems to be the language of choice for notebooks,
you will need to manually install and configure a scala kernel
I'm able to get things working with the almond kernel : https://almond.sh/
When you install almond, be careful to pick a version of scala
that corresponds to the DBR runtime you will be connected to in the remote cluster.
Step 3. Now follow the databricks-connect docs to get a scala program to
compile and connect to the remote cluster via the intellij / sbt environment.
The documentation can be found here. https://docs.databricks.com/dev-tools/databricks-connect.html
This is a fully supported and fairly conventional approach that can be used to develop custom modules.
Step 4. Once you have created a working scala process, you will be familiar with sbt. The build.sbt is used for referencing the "databricks-connect" distribution. The distribution will be in a location like so:
unmanagedBase := new java.io.File("C:\\Users\\minime\\AppData\\Local\\Programs\\Python\\Python37\\Lib\\site-packages\\pyspark\\jars")
While it is straightforward for intellij / sbt to compile those dependencies into your program, it will take a bit more work to do the equivalent thing in he almond/jupyter kernel.
Before you go back to your jupyter notebook, run your new scala process and allow it to create a spark session. Then before the process dies, use "process explorer" to find the the related java.exe, then in the lower view/pane show handles, then copy all the handles into notepad (Ctrl+A in process explorer, Ctrl+V in notepad). This gives you the subset of modules from the databricks distribution that are actually being loaded into your process at runtime.
Step 5. Now that you have the relevant modules, you need to configure your almond scala kernel to load them into memory. Create a new jupyter notebook and select the scala kernel and use code like the following to load all your modules:
interp.load.cp(ammonite.ops.Path(java.nio.file.FileSystems.getDefault().getPath( "C:/Users/minime/AppData/Local/Programs/Python/Python37/Lib/site-packages/pyspark/jars/whatever001-1.1.1.jar")))
interp.load.cp(ammonite.ops.Path(java.nio.file.FileSystems.getDefault().getPath( "C:/Users/minime/AppData/Local/Programs/Python/Python37/Lib/site-packages/pyspark/jars/whatever002-1.1.1.jar")))
interp.load.cp(ammonite.ops.Path(java.nio.file.FileSystems.getDefault().getPath( "C:/Users/minime/AppData/Local/Programs/Python/Python37/Lib/site-packages/pyspark/jars/whatever003-1.1.1.jar")))
...
Please note that there are lots and lots of jars in the distribution (maybe 100!?).
You may wish to load other libraries directly from maven (assuming they are compatible with scala 2.12.10 and your databricks-connect distribution)
// Microsoft JDBC
interp.load.ivy("com.microsoft.sqlserver" % "mssql-jdbc" % "8.2.1.jre8")
// Other libraries
interp.load.ivy("joda-time" % "joda-time" % "2.10.5")
interp.load.ivy("org.scalaj" %% "scalaj-http" % "2.3.0")
interp.load.ivy("org.json4s" %% "json4s-native" % "3.5.3")
interp.load.ivy("com.microsoft.azure" % "msal4j" % "1.6.1")
// Other libraries
interp.load.ivy("org.apache.hadoop" % "hadoop-azure" % "3.2.1")
Fair warning... when loading libraries into the almond kernel, it is sometimes important to load them in a specific order. My examples above aren't intended to tell you what order to load them via interp.load.
Step 6. If everything went as planned, you should now be able to create a spark session running in a jupyter notebook using code that is similar to the stuff you were writing in "Step 3" above.
import org.apache.spark.sql._
val p_SparkSession = SparkSession.builder()
.appName("APP_" + java.util.UUID.randomUUID().toString)
.master("local")
.config("spark.cores.max","4")
.getOrCreate()
Your almond kernel is now connected to the remote cluster, via the databricks-connect distribution. Everything works as long as you don't need to serialize any functions or data types out to the remote cluster. In that case you will probably get a variety of serialization errors and null pointer exceptions. Here is an example:
java.lang.NullPointerException
com.databricks.service.SparkServiceClassSync$.checkSynced(SparkServiceClassSync.scala:244)
org.apache.spark.sql.util.SparkServiceObjectOutputStream.writeReplaceClassDescriptor(SparkServiceObjectOutputStream.scala:82)
...
org.apache.spark.sql.util.ProtoSerializer.serializePlan(ProtoSerializer.scala:377)
com.databricks.service.SparkServiceRPCClientStub.$anonfun$executePlan$1(SparkServiceRPCClientStub.scala:193)
This answer will be the first of several. I'm hoping that there are other scala/spark/databricks experts who can help work out the remaining kinks in this configuration, so that any of the functions and data types that are declared in my notebooks can be used by the remote cluster as well!
In my first answer I pointed out that the primary challenge in using scala notebooks (in Jupyter lab with almond) is that we are missing the functionality to serialize any functions or data types, and send them out to the remote cluster that is being hosted by databricks.
I should point out that there are two workarounds that I use regularly when I encounter this limitation.
I revert to using the "spark-shell". It is a standard component of the databricks-connect distribution. I can then load the relevant parts of my scala code using :load and :paste commands. For some happy reason the "spark-shell" is fully capable of serializing functions and data types in order to dynamically send them to the remote cluster. This is something that the almond kernel is not able to do for us within the context of the Jupyter notebooks.
The other workaround is to .collect() the dataframes back to the driver (within the memory of the jupyter notebook kernel.) Once they are collected, I can perform additional transformations on them, even with the help of "original" functions and "original" data types that are only found within my jupyter notebook. In this case I won't get the performance benefits of distributed processing. But while the code is still under development, I'm typically not working with very large datasets so it doesn't make that much of a difference if the driver is running my functions, or if the workers are.
Hope this is clear. I'm hoping that Databricks may eventually see the benefit of allowing scala programmers to develop code remotely, in jupyter lab. I think they need to be the ones to select one of the scala kernels, and do the heavy-lifting to support this scenario. As-of now they probably believe their own notebook experience in their own portal is sufficient for the needs of all scala programmers.
To add on to David's first answer, I did this additional step:
Step 5.5. Programmatically add the databricks jar dependencies to the scala kernel.
Using the directory you get from databricks-connect get-jar-dir I used the following code:
import $ivy.`com.lihaoyi::os-lib:0.2.7`
def importJars{
val myJars = os.list(os.Path("/Users/me/miniconda3/envs/dbx-p40/lib/python3.7/site-packages/pyspark/jars/"))
for (j <- myJars){
interp.load.cp(ammonite.ops.Path(java.nio.file.FileSystems.getDefault().getPath(j.toString)))
}
}
importJars

<console>:25: error: object databricks is not a member of package com

I actually work on zeppelin with spark and scala. I want to import the library which contain : import com.databricks.spark.xml.
I tried but I have still the same mistake in zeppelin mistake : <console>:25: error: object databricks is not a member of package com.
What I've done actually ? I create a note in Zeppelin with this code : %dep
z.load("com.databricks:spark-xml_2.11:jar:0.5.0"). Even with that, the interpreter don't work. It's like it don't succeed to load the library.
Have you an idea why it don't work ?
Thanks for your help and have a nice day !
Your problem is very common and not intuitive to solve. I resolved an issue similar to this (I wanted to load the postgres jdbc connector in AWS EMR and I was using a linux terminal). Your issue can be resolved by checking if you can:
load the jar file manually to the environment that is hosting Zeppelin.
add the path of the jar file to your CLASSPATH environment variable. I don't know where you're hosting your files that manage your CLASSPATH env, but in EMR, my file, viewed from the Zeppelin root directory, was here: /usr/lib/zeppelin/conf/zeppelin-env.sh
download the zeppelin interpreter with
$ sudo ./bin/install-interpreter.sh --name "" --artifact
add the interpreter in Zeppelin wby going to the Zeppelin Interpreter GUI and add in the interpreter group.
Reboot Zeppelin with:
$ sudo stop zeppelin
$ sudo start zeppelin
It's very likely that your configurations may vary slightly, but I hope this helps provide some structure and relevance.

Is there a way to run a scala sheet in Intellij on a remote environment?

I am looking for a way to run some scala code in a spark shell on a cluster. Is there a way to do this? Or even inside a simple scala shell where I can instantiate my own spark context.
I tried to look for some kind of Remote setup for scala worksheet in Intellij but I wasn't able to find anything useful.
So far the only way I can connect to a remote environment is to run the debugger
The best solution I have come across is that on the spark cluster install the jupyter notebook.
Now you can use the browser and work remotely on the cluster. Otherwise good old telnet also works.