Spark Dataframe - Windowing Function - Lag & Lead for Insert & Update output - scala

I need to perform the below operation on dataframes using Windowing function Lag and Lead.
For each Key, I need to perform the below Insert and update in the final output
Insert Condition:
1. By Default, LAYER_NO=0 , needs to be written in output.
2. If there is any change in the value of COL1,COL2,COL3, with respective to its precious record,then that records needs to be written in output.
Example: key_1 with layer_no=2, there is a change of value from 400 to 600 in COL3
Update Condition:
1. If there were NO changes in the value of COL1,COL2,COL3, with respective to its previous record,but there is a change in "DEPART column", this value needs to be updated in the output.
Example: key_1 with layer_no=3, there were NO changes in COL1,COL2,COL3, But there is value change in DEPART column as "xyz" , so this needs to be updated in the output.
2. Even the LAYER_NO should be updated sequentially, after inserting the record with layer_no=0
val inputDF = values.toDF("KEY","LAYER_NO","COl1","COl2","COl3","DEPART")
inputDF.show()
+-----+--------+----+----+----+------+
| KEY|LAYER_NO|COL1|COL2|COL3|DEPART|
+-----+--------+----+----+----+------+
|key_1| 0| 200| 300| 400| abc|->default write
|key_1| 1| 200| 300| 400| abc|
|key_1| 2| 200| 300| 600| uil|--->change in col3,so write
|key_1| 2| 200| 300| 600| uil|
|key_1| 3| 200| 300| 600| xyz|--->change in col4,so update
|key_2| 0| 500| 700| 900| prq|->default write
|key_2| 1| 888| 555| 900| tep|--->change in col1 & col 2,so write
|key_3| 0| 111| 222| 333| lgh|->default write
|key_3| 1| 084| 222| 333| lgh|--->change in col1,so write
|key_3| 2| 084| 222| 333| rrr|--->change in col4,so update
+-----+--------+----+----+----+------+
Expected Output:
outputDF.show()
+-----+--------+----+----+----+------+
| KEY|LAYER_NO|COl1|COl2|COl3|DEPART|
+-----+--------+----+----+----+------+
|key_1| 0| 200| 300| 400| abc|
|key_1| 1| 200| 300| 600| xyz|
|key_2| 0| 500| 700| 900| prq|
|key_2| 1| 888| 555| 900| tep|
|key_3| 0| 111| 222| 333| lgh|
|key_3| 1| 084| 222| 333| rrr|
+-----+--------+----+----+----+------+

We need to define two Window's to arrive at your expected output. One for checking the change in the DEPART column, the second for checking the difference in the sum of COL1 to COL3.
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
val w_col = Window.partitionBy("KEY", "COL1", "COL2", "COL3").orderBy("LAYER_NO")
.rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing)
val w_key = Window.partitionBy("KEY").orderBy("LAYER_NO")
Then we simply replace the values in DEPART column by the correct values, and filter the data to rows where the lagged sum differs from the current sum of columns (and rows where LAYER_NO === 0). Lastly, we replace LAYER_NO by rank.
inputDF.withColumn("DEPART", last("DEPART").over(w_col))
.withColumn("row_sum",($"COL1" + $"COL2" + $"COL3"))
.withColumn("lag_sum", lag($"row_sum",1).over(w_key))
.filter($"LAYER_NO" === 0 || not($"row_sum" === $"lag_sum"))
.withColumn("LAYER_NO", rank.over(w_key)-1)
.drop("row_sum", "lag_sum").show()
+-----+--------+----+----+----+------+
| KEY|LAYER_NO|COl1|COl2|COl3|DEPART|
+-----+--------+----+----+----+------+
|key_1| 0| 200| 300| 400| abc|
|key_1| 1| 200| 300| 600| xyz|
|key_2| 0| 500| 700| 900| prq|
|key_2| 1| 888| 555| 900| tep|
|key_3| 0| 111| 222| 333| lgh|
|key_3| 1| 084| 222| 333| rrr|
+-----+--------+----+----+----+------+

Related

How to update Iceberg table storing time series data

I'm trying to apply some updates to an Iceberg table using pyspark. The original data in the table is:
+-------------------+---+---+
| time| A| B|
+-------------------+---+---+
|2022-12-01 00:00:00| 1| 6|
|2022-12-02 00:00:00| 2| 7|
|2022-12-03 00:00:00| 3| 8|
|2022-12-04 00:00:00| 4| 9|
|2022-12-05 00:00:00| 5| 10|
+-------------------+---+---+
And the update (stored as a temporary view) is:
+-------------------+---+---+
| time| A| C|
+-------------------+---+---+
|2022-12-04 00:00:00| 40| 90|
|2022-12-05 00:00:00| 50|100|
+-------------------+---+---+
I'd like to end up with:
+-------------------+----+---+----+
| time| A| B| C|
+-------------------+----+---+----+
|2022-12-01 00:00:00| 1| 6| NaN|
|2022-12-02 00:00:00| 2| 7| NaN|
|2022-12-03 00:00:00| 3| 8| NaN|
|2022-12-04 00:00:00| 40| 9| 90|
|2022-12-05 00:00:00| 50| 10| 100|
+-------------------+----+---+----+
As per the docs, I've tried the query:
spark.sql("MERGE INTO db.data d USING update u ON d.time = u.time"
" WHEN MATCHED THEN UPDATE SET * WHEN NOT MATCHED THEN INSERT *")
but it fails because the update doesn't contain column B. Also, even if the update did contain column B, column C wouldn't get added in the result, because it isn't in the original table. Is there anything I can do to get the behaviour I'm after?
Thanks for any help.

PySpark: How to groupby with Or in columns

I want to groupby in PySpark, but the value can appear in more than a columns, so if it appear in any of the selected column it will be grouped by.
For example, if I have this table in Pyspark:
I want to sum the visits and investments for each ID, so that the result would be:
Note that the ID1 was the sum of the rows 0,1,3 which have the ID1 in one of the first three columns [ID1 Visits = 500 + 100 + 200 = 800].
The ID2 was the sum of the rows 1,2, etc
OBS 1: For the sake of simplicity my example was a simple dataframe, but in real is a much larger df with a lot of rows and a lot of variables, and other operations, not just "sum".
This can't be worked on pandas, because is too large. Should be in PySpark
OBS2: For ilustration I printed in pandas the tables, but in real it is in the PySpark
I appreciate all the help and thank you very much in advance
First of all let's create our test dataframe.
>>> import pandas as pd
>>> data = {
"ID1": [1, 2, 5, 1],
"ID2": [1, 1, 3, 3],
"ID3": [4, 3, 2, 4],
"Visits": [500, 100, 200, 200],
"Investment": [1000, 200, 400, 200]
}
>>> df = spark.createDataFrame(pd.DataFrame(data))
>>> df.show()
+---+---+---+------+----------+
|ID1|ID2|ID3|Visits|Investment|
+---+---+---+------+----------+
| 1| 1| 4| 500| 1000|
| 2| 1| 3| 100| 200|
| 5| 3| 2| 200| 400|
| 1| 3| 4| 200| 200|
+---+---+---+------+----------+
Once we have DataFrame that we can operate on we have to define a function which will return list of unique IDs from columns ID1, ID2 and ID3.
>>> import pyspark.sql.functions as F
>>> from pyspark.sql.types import ArrayType, IntegerType
>>> #F.udf(returnType=ArrayType(IntegerType()))
... def ids_list(*cols):
... return list(set(cols))
Now it's time to apply our udf on a DataFrame.
>>> df = df.withColumn('ids', ids_list('ID1', 'ID2', 'ID3'))
>>> df.show()
+---+---+---+------+----------+---------+
|ID1|ID2|ID3|Visits|Investment| ids|
+---+---+---+------+----------+---------+
| 1| 1| 4| 500| 1000| [1, 4]|
| 2| 1| 3| 100| 200|[1, 2, 3]|
| 5| 3| 2| 200| 400|[2, 3, 5]|
| 1| 3| 4| 200| 200|[1, 3, 4]|
+---+---+---+------+----------+---------+
To make use of ids column we have to explode it into separate rows and drop ids column.
>>> df = df.withColumn("ID", F.explode('ids')).drop('ids')
>>> df.show()
+---+---+---+------+----------+---+
|ID1|ID2|ID3|Visits|Investment| ID|
+---+---+---+------+----------+---+
| 1| 1| 4| 500| 1000| 1|
| 1| 1| 4| 500| 1000| 4|
| 2| 1| 3| 100| 200| 1|
| 2| 1| 3| 100| 200| 2|
| 2| 1| 3| 100| 200| 3|
| 5| 3| 2| 200| 400| 2|
| 5| 3| 2| 200| 400| 3|
| 5| 3| 2| 200| 400| 5|
| 1| 3| 4| 200| 200| 1|
| 1| 3| 4| 200| 200| 3|
| 1| 3| 4| 200| 200| 4|
+---+---+---+------+----------+---+
Finally we have to group our DataFrame by ID column and calculate sums. Final result is ordered by ID.
>>> final_df = (
... df.groupBy('ID')
... .agg( F.sum('Visits'), F.sum('Investment') )
... .orderBy('ID')
... )
>>> final_df.show()
+---+-----------+---------------+
| ID|sum(Visits)|sum(Investment)|
+---+-----------+---------------+
| 1| 800| 1400|
| 2| 300| 600|
| 3| 500| 800|
| 4| 700| 1200|
| 5| 200| 400|
+---+-----------+---------------+
I hope you make it useful.
You can do something like below:
Create array of all id columns- > ids column below
explode ids column
Now you will get duplicates, to avoid duplicate aggregation use distinct
Finally groupBy ids column and perform all your aggregations
Note: : If your dataset can have exact duplicate rows then add one columns with df.withColumn('uid', f.monotonically_increasing_id()) before creating array otherwise distinct will drop it.
Example for your dataset:
import pyspark.sql.functions as f
df.withColumn('ids', f.explode(f.array('id1','id2','id3'))).distinct().groupBy('ids').agg(f.sum('visits'), f.sum('investments')).orderBy('ids').show()
+---+-----------+----------------+
|ids|sum(visits)|sum(investments)|
+---+-----------+----------------+
| 1| 800| 1400|
| 2| 300| 600|
| 3| 500| 800|
| 4| 700| 1200|
| 5| 200| 400|
+---+-----------+----------------+

How do I replace null values of multiple columns with values from multiple different columns

I have a data frame like below
data = [
(1, None,7,10,11,19),
(1, 4,None,10,43,58),
(None, 4,7,67,88,91),
(1, None,7,78,96,32)
]
df = spark.createDataFrame(data, ["A_min", "B_min","C_min","A_max", "B_max","C_max"])
df.show()
and I would want the columns which show name as 'min' to be replaced by their equivalent max column.
Example null values of A_min column should be replaced by A_max column
It should be like the data frame below.
+-----+-----+-----+-----+-----+-----+
|A_min|B_min|C_min|A_max|B_max|C_max|
+-----+-----+-----+-----+-----+-----+
| 1| 11| 7| 10| 11| 19|
| 1| 4| 58| 10| 43| 58|
| 67| 4| 7| 67| 88| 91|
| 1| 96| 7| 78| 96| 32|
+-----+-----+-----+-----+-----+-----+
I have tried the code below by defining the columns but clearly this does not work. Really appreciate any help.
min_cols = ["A_min", "B_min","C_min"]
max_cols = ["A_max", "B_max","C_max"]
for i in min_cols
df = df.withColumn(i,when(f.col(i)=='',max_cols.otherwise(col(i))))
display(df)
Assuming you have the same number of max and min columns, you can use coalesce along with python's list comprehension to obtain your solution
from pyspark.sql.functions import coalesce
min_cols = ["A_min", "B_min","C_min"]
max_cols = ["A_max", "B_max","C_max"]
df.select(*[coalesce(df[val], df[max_cols[pos]]).alias(val) for pos, val in enumerate(min_cols)], *max_cols).show()
Output:
+-----+-----+-----+-----+-----+-----+
|A_min|B_min|C_min|A_max|B_max|C_max|
+-----+-----+-----+-----+-----+-----+
| 1| 11| 7| 10| 11| 19|
| 1| 4| 58| 10| 43| 58|
| 67| 4| 7| 67| 88| 91|
| 1| 96| 7| 78| 96| 32|
+-----+-----+-----+-----+-----+-----+

Window function count() does not work properly when there is orderBy in the window definition

In pyspark, when using count().over(window), if there is orderBy in the window definition, the results are not correct. Not sure if this is a bug, or there is a better way to do it.
Compare the same group with different window definition, one is with orderBy, another is not. They showed different results. The window definition without orderBy has expected results.
from pyspark.sql.functions import *
from pyspark.sql.types import *
from pyspark.sql.window import Window
cschema = StructType([StructField('customer',StringType()),StructField('sales', IntegerType())])
data = [
['Bob',20],
['Bob',30],
['Bob',22],
['John',33],
['John', 18],
['Bob', 30],
['John', 18]]
test_df = spark.createDataFrame(data, schema = cschema)
test_df.show()
+--------+-----+
|customer|sales|
+--------+-----+
| Bob| 20|
| Bob| 30|
| Bob| 22|
| John| 33|
| John| 18|
| Bob| 30|
| John| 18|
+--------+-----+
win_ordered = Window.partitionBy('customer').orderBy(col('sales'))
win_non_ordered = Window.partitionBy('customer')
test_df.withColumn('cnt1', count(col('sales')).over(win_ordered)).withColumn('cnt2', count(col('sales')).over(win_non_ordered)).show()
+--------+-----+----+----+
|customer|sales|cnt1|cnt2|
+--------+-----+----+----+
| Bob| 20| 1| 4|
| Bob| 22| 2| 4|
| Bob| 30| 4| 4|
| Bob| 30| 4| 4|
| John| 18| 2| 3|
| John| 18| 2| 3|
| John| 33| 3| 3|
+--------+-----+----+----+
I am expecting the 'cnt1' column has the same value across the group, just like 'cnt2' column.

How to create a sequence of events (column values) per some other column?

I have a Spark data frame as shown below -
val myDF = Seq(
(1,"A",100,0,0),
(1,"E",200,0,0),
(1,"",300,1,49),
(2,"A",200,0,0),
(2,"C",300,0,0),
(2,"D",100,0,0)
).toDF("visitor","channel","timestamp","purchase_flag","amount")
scala> myDF.show
+-------+-------+---------+-------------+------+
|visitor|channel|timestamp|purchase_flag|amount|
+-------+-------+---------+-------------+------+
| 1| A| 100| 0| 0|
| 1| E| 200| 0| 0|
| 1| | 300| 1| 49|
| 2| A| 200| 0| 0|
| 2| C| 300| 0| 0|
| 2| D| 100| 0| 0|
+-------+-------+---------+-------------+------+
I would like to create Sequence dataframe for every visitor from myDF that traces a visitor's path to purchase ordered by timestamp dimension.
The output dataframe should look like below(-> can be any delimiter) -
+-------+---------------------+
|visitor|channel sequence |
+-------+---------------------+
| 1| A->E->purchase |
| 2| D->A->C->no_purchase|
+-------+---------------------+
To make things clear, visitor 2 has been exposed to channel D, then A and then C; and he does not make a purchase.
Hence the sequence is to be formed as D->A-C->no_purchase.
NOTE: Whenever a purchase happens, channel value goes blank and purchase_flag is set to 1.
I want to do this using a Scala UDF in Spark so that I re-apply the method on other datasets.
Here's how it is done using udf function
val myDF = Seq(
(1,"A",100,0,0),
(1,"E",200,0,0),
(1,"",300,1,49),
(2,"A",200,0,0),
(2,"C",300,0,0),
(2,"D",100,0,0)
).toDF("visitor","channel","timestamp","purchase_flag","amount")
import org.apache.spark.sql.functions._
def sequenceUdf = udf((struct: Seq[Row], purchased: Seq[Int])=> struct.map(row => (row.getAs[String]("channel"), row.getAs[Int]("timestamp"))).sortBy(_._2).map(_._1).filterNot(_ == "").mkString("->")+{if(purchased.contains(1)) "->purchase" else "->no_purchase"})
myDF.groupBy("visitor").agg(collect_list(struct("channel", "timestamp")).as("struct"), collect_list("purchase_flag").as("purchased"))
.select(col("visitor"), sequenceUdf(col("struct"), col("purchased")).as("channel sequence"))
.show(false)
which should give you
+-------+--------------------+
|visitor|channel sequence |
+-------+--------------------+
|1 |A->E->purchase |
|2 |D->A->C->no_purchase|
+-------+--------------------+
You can make it as much generic as you can . this is just a demo on how you should proceed