What is the "real" difference between val b and var b? - scala

What is the "real" difference between the following ?
val b = ( x:Double) => x * 3
var b = ( x:Double) => x * 3
Technically speaking, once a value is assigned to val , it should not be changed. However, as part of the first statement, the value of b could be changed to different values by passing different values of x.
scala> val b = ( x:Double) => x * 3
b: Double => Double = $$Lambda$1109/411756754#7a522157
scala> b(3)
res1: Double = 9.0
scala> b(4)
res2: Double = 12.0
What is actually happening here? Is it not that value of b is changing here?

b is a function that takes a Double and returns a one.
The function itself can't be changed, not the value it returns (functions are first class values).
If you try to do:
b = (x : Double) => x * 6
you'll get:
error: reassignment to val
But it's possible to change the var one:
scala> b = (x : Double) => x * 7
b: Double => Double = $$Lambda$1308/1272194712#9e46050
But note that when you change the var one, you should keep its type: A function that takes a Double and returns a Double, the same if you were to change any other type like Integer or Boolean.

In the example posted by you b is a function. You are passing different values to the function subsequently. Value of b is not changed by that.
Syntax is as follows:

Related

How to declare in scala a default param in a method of an implicit class

In order to use infix notation, I have the following example of scala code.
implicit class myclass(n:Int ){
private def mapCombineReduce(map : Int => Double, combine: (Double,Double) => Double, zero: Double )(a:Int, b:Double): Double =
if( a > b) zero else combine ( map(a), mapCombineReduce(map,combine,zero)(a+1,b) )
var default_value_of_z : Int = 0
def sum( z : Int = default_value_of_z) = mapReduce( x=>x , (x,y) => x+y+z, 0)(1,n)
def ! = mapCombineReduce( x=> x, (x,y) => x*y, 1)(1,n)
}
4 !
4 sum 1 //sum the elements from 1 to 7 and each time combine the result, add 1 to the result.
4 sum
Is there any way in scala 2.12 to run 4 sum without have a double declaration of the sum method inside myclass ?
No, because default arguments are only used if argument list is provided
def f(x: Int = 1) = x
f // interpreted as trying to do eta-expansion
In fact starting Scala 3 it will indeed eta-expand
scala> def f(x: Int = 1) = x
def f(x: Int): Int
scala> f
val res1: Int => Int = Lambda$7473/1229666909#61a1990e
so in your case you will have to write 4.sum() with argument list present.

Calculating Square Root recursively in Scala

The following code works but I don't quite understand how the arguments are mapped to the parameter lists. Please be aware Im new to Scala.
import Math.abs
val tolerance = 0.0001
def isCloseEnough(x: Double, y: Double) =
abs((x - y) / x) / x < tolerance
def fixedPoint(f: Double => Double)(firstGuess: Double) = {
def iterate(guess: Double): Double = {
val next = f(guess)
if (isCloseEnough(guess, next)) next
else iterate(next)
}
iterate(firstGuess)
}
def averageDamp(f: Double => Double)(x: Double) = (x + f(x)) / 2
def sqrt(x: Double) =
fixedPoint(averageDamp(y => x / y))(1.0)
sqrt(2.0)
The body of the sqrt function above is fixedPoint(averageDamp(y => x / y))(1.0)
where
(y => x / y) maps to (f: Double => Double) of the averageDamp function and
(1.0) maps to (firstGuess: Double) of the fixedPoint function but
looks like nothing maps to (x: Double) of the averageDamp function.
Thank you in advance.
This is called currying. What's really happening is that averageDamp(y => x / y) is being interpreted as a function: Double => Double, because once you set the first parameter list to a particular set of values, you obtain a function that takes the second parameter list.
For example, consider the following code:
def multiply(x: Double)(y: Double) = x * y
val multiplyByFive: Double => Double = multiply(5)
println(multiplyByFive(2)) // 10
println(multiplyByFive(6)) // 30
As you see, the fact of applying multiply with only one parameter list out of two creates a new function of the second parameter list (here (y: Double)) that has a fixed set of values for the first parameter list (here (5)).
Another equivalent way to write this, which perhaps will be more explicit for you, is the following :
val multiplyByFive: Double => Double = multiply(5)(_)
Here we explicitly apply the function with two parameters lists, but using a wildcard for the second, which is a way to tell to the compiler to create a function that replaces the underscore by a parameter of the function.

Why is this function called multiple times?

In this function "f" :
def f(x: => Int) : Int = x * x * x //> f: (x: => Int)Int
var y = 0 //> y : Int = 0
f {
y += 1
println("invoked")
y
} //> invoked
//| invoked
//| invoked
//| res0: Int = 6
"f" is invoked same amount of times as "x" parameter is multiplied.
But why is function invoked multiple times ?
Should "f" not expand to 1 * 1 * 1 not 1 * 2 * 3 ?
Your x is not a function, it is a by-name parameter, and its type is a parameterless method type.
Parameterless method type means the same as def x, something that is evaluated every time you reference it. By reference, we mean x and not x.apply() or x().
The expression you're passing to your function f is evaluated every time x is referenced in f. That expression is the whole thing in braces, a block expression. A block is a sequence of statements followed by the result expression at the end.
Here's another explanation: https://stackoverflow.com/a/13337382/1296806
But let's not call it a function, even if it behaves like one under the covers.
Here is the language used in the spec:
http://www.scala-lang.org/files/archive/spec/2.11/04-basic-declarations-and-definitions.html#by-name-parameters
It's not a value type because you can't write val i: => Int.
It was a big deal when they changed the implementation so you could pass a by-name arg to another method without evaluating it first. There was never a question that you can pass function values around like that. For example:
scala> def k(y: => Int) = 8
k: (y: => Int)Int
scala> def f(x: => Int) = k(x) // this used to evaluate x
f: (x: => Int)Int
scala> f { println("hi") ; 42 }
res8: Int = 8
An exception was made to "preserve the by-name behavior" of the incoming x.
This mattered to people because of eta expansion:
scala> def k(y: => Int)(z: Int) = y + y + z
k: (y: => Int)(z: Int)Int
scala> def f(x: => Int) = k(x)(_) // normally, evaluate what you can now
f: (x: => Int)Int => Int
scala> val g = f { println("hi") ; 42 }
g: Int => Int = <function1>
scala> g(6)
hi
hi
res11: Int = 90
The question is how many greetings do you expect?
More quirks:
scala> def f(x: => Int) = (1 to 5) foreach (_ => x)
f: (x: => Int)Unit
scala> def g(x: () => Int) = (1 to 5) foreach (_ => x())
g: (x: () => Int)Unit
scala> var y = 0
y: Int = 0
scala> y = 0 ; f { y += 1 ; println("hi") ; y }
hi
hi
hi
hi
hi
y: Int = 5
scala> y = 0 ; g { y += 1 ; println("hi") ; () => y }
hi
y: Int = 1
scala> y = 0 ; g { () => y += 1 ; println("hi") ; y }
hi
hi
hi
hi
hi
y: Int = 5
Functions don't cause this problem:
scala> object X { def f(i: Int) = i ; def f(i: => Int) = i+1 }
defined object X
scala> X.f(0)
res12: Int = 0
scala> trait Y { def f(i: Int) = i }
defined trait Y
scala> object X extends Y { def f(i: => Int) = i+1 }
defined object X
scala> X.f(0)
<console>:11: error: ambiguous reference to overloaded definition,
both method f in object X of type (i: => Int)Int
and method f in trait Y of type (i: Int)Int
match argument types (Int)
X.f(0)
^
Compare method types:
http://www.scala-lang.org/files/archive/spec/2.11/03-types.html#method-types
This is not a pedantic distinction; irrespective of the current implementation, it can be confusing to think of a by-name parameter as "really" a function.
Another way of saying what has already been said is that inside f you invoke the function x three times. The first time it increments the y var and returns 1. The second time it again increments y returning 2 and the third time it again increments y and returns 3.
If you want it invoked only once then you may want to do something like this:
def f(x: => Int) : Int = x * x * x
var y = 0
lazy val xx = {
y += 1
println("invoked")
y
}
f {xx}
This will print 'invoked' only once and result in a returned value of 1.
x: T means need a T value.
x: => T means need a T value, but it is call by name.
x: () => T This means need a function given nothing to T
However, this question is not related to the difference between function and method.
The reason is call by name is invoked every time you try to use it.
change to call by value def f(x: Int) : Int, it will only invoke once.
Because you increment y by 1 every time the argument is used inside f
The result which your function f() returns is changing, because there is a global variable that is incremented with every subsequent call to that function.
the x in f(x: => Int) is interpreted as "some function that returns Int". So it has to be called 3 times to evaluate the x*x*x expression. With every call, you increment the global variable and return the result, which is how you arrive at three subsequent natural numbers (because the global variable is initialized to 0). Hence 1*2*3.

Why is it possible to assign recursive lambdas to non-lazy vals in Scala?

In the following statement the val f is defined as a lambda that references itself (it is recursive):
val f: Int => Int = (a: Int) =>
if (a > 10) 3 else f(a + 1) + 1 // just some simple function
I've tried it in the REPL, and it compiles and executes correctly.
According to the specification, this seems like an instance of illegal forward referencing:
In a statement sequence s[1]...s[n] making up a block, if a simple
name in s[i] refers to an entity defined by s[j] where j >= i,
then for all s[k] between and including s[i] and s[j],
s[k] cannot be a variable definition.
If s[k] is a value definition, it must be lazy.
The assignment is a single statement, so it satisfied the j >= i criteria, and it is included in the interval of statements the two rules apply to (between and including s[i] and s[j]).
However, it seems that it violates the second rule, because f is not lazy.
How is that a legal statement (tried it in Scala 2.9.2)?
You probably tried to use this in the REPL, which wraps all contents in an object definition. This is important because in Scala (or better: on the JVM) all instance values are initialized with a default value, which is null for all AnyRefs and 0, 0.0 or false for AnyVals. For method values this default initialization does not happen, therefore you get an error message in this case:
scala> object x { val f: Int => Int = a => if (a > 10) 3 else f(a+1)+1 }
defined object x
scala> def x { val f: Int => Int = a => if (a > 10) 3 else f(a+1)+1 }
<console>:7: error: forward reference extends over definition of value f
def x { val f: Int => Int = a => if (a > 10) 3 else f(a+1)+1 }
^
This behavior can even lead to weird situations, therefore one should be careful with recursive instance values:
scala> val m: Int = m+1
m: Int = 1
scala> val s: String = s+" x"
s: String = null x

How to invoke no-arg anonymous function with no parentheses

Take this code:
var x = 10
val y = () => x + 1
I then want to treat y as if its a variable that holds an Int and changes anytime x changes. Essentially I want to bind y to x.
Problem is, if I just type y then I get the result res0: () => Int = <function0>
I was under the impression that you could invoke 0-arity functions without any parens, but I am required to use y() to get the behavior I am trying to achieve.
Is there a better way to define the anonymous function or do I need to use a different approach?
Why do you need to do it like that? Just do def y = x + 1
scala> var x = 1
x: Int = 1
scala> def y = x + 1
y: Int
scala> y
res0: Int = 2
scala> x = 3
x: Int = 3
scala> y
res1: Int = 4
EDIT to address some comments:
If you define val y = () => x + 1, you are defining y as a value that holds a function that takes no argument and returns an Int. To call the function that is held by this variable, you will need to call it with (), to tell the compiler that you don't want to pass the value, but to execute (evaluate) the function that is within it.
If you define val y = x + 1, you are defining a value (constant), that is assigned in the moment it is executed, you could postpone evaluation using lazy, but once it is assigned, it will not be evaluated again.
If you define def y = x + 1, you are defining a function that returns x+1, which is what you want.
You have not defined a 0-arity function. You have actually defined a Unit => Int function. That is why you can not invoke it like you would like to invoke it. I've rarely seen 0-arity functions outside the context of come contained function scope:
def something[V](value: Int)(f: => V) =
if(value %2 == 0) f
else throw new Exception("not even (and also not evaluated f)")
where it is used as a lazily deferred execution body.
Edit: I would use the other person's answer.