Matlab - plot the points contained in slice of alphaShape - matlab

Using Matlab, I'm trying to calculate and plot points which are contained in z-slices of this shape:
It is a pyramid at a 45deg angle with the top removed.
When I take a slice at z=198 (a bit below the datatip above), I get a weird artifact:
Here is my code snippet doing the checking:
% Setup alphaShape as "alpha" ....
points = 1e3 * [0.3223 0.1761 0.3299
0.5752 1.2034 -0.0618
-0.0172 1.2034 -0.0618
0.2357 0.1761 0.3299
0.3223 0.0671 0.2209
0.5752 0.4588 -0.8064
-0.0172 0.4588 -0.8064
0.2357 0.0671 0.2209];
alpha = alphaShape(points);
% Then, check if coordinates on slice are in or outside alpha
z = 198;
width = 550;
depth = 450;
inout = zeros(width,depth);
for qx = 1:width
for qy = 1:depth
in = inShape(alpha,qx,qy,z);
if (in)
inout(qx,qy) = 1;
end
end
end
% Plot
figure; contourf(inout.'); % Not sure why conjugate needed?
Can anyone point out what is causing the extra "peg" sticking out of my slice result? Or how to fix my code to remove it?
EDIT: Using plot(alpha), the square top is not connected to the base the way I thought:
My initial plot was done with:
K = convhull(points);
figure;trisurf(K,points(:,1),points(:,2),points(:,3),'Facecolor','red','FaceAlpha',0.1);

The issue was how I created my alphaShape.
Using the builtin convhull() function and inhull() from the Matlab File Exchange gave the results I desire.

Related

convert image from Cartesian to Polar

I want to convert an image from Cartesian to Polar and to use it for opengl texture.
So I used matlab referring to the two articles below.
Link 1
Link 2
My code is exactly same with Link 2's anwser
% load image
img = imread('my_image.png');
% convert pixel coordinates from cartesian to polar
[h,w,~] = size(img);
[X,Y] = meshgrid((1:w)-floor(w/2), (1:h)-floor(h/2));
[theta,rho] = cart2pol(X, Y);
Z = zeros(size(theta));
% show pixel locations (subsample to get less dense points)
XX = X(1:8:end,1:4:end);
YY = Y(1:8:end,1:4:end);
tt = theta(1:8:end,1:4:end);
rr = rho(1:8:end,1:4:end);
subplot(121), scatter(XX(:),YY(:),3,'filled'), axis ij image
subplot(122), scatter(tt(:),rr(:),3,'filled'), axis ij square tight
% show images
figure
subplot(121), imshow(img), axis on
subplot(122), warp(theta, rho, Z, img), view(2), axis square
The result was exactly what I wanted, and I was very satisfied except for one thing. It's the area (red circled area) in the picture just below. Considering that the opposite side (blue circled area) is not, I think this part should also be filled. Because of this part is empty, so there is a problem when using it as a texture.
And I wonder how I can fill this part. Thank you.
(little difference from Link 2's answer code like degree<->radian and axis values. but i think it is not important.)
Those issues you show in your question happen because your algorithm is wrong.
What you did (push):
throw a grid on the source image
transform those points
try to plot these colored points and let MATLAB do some magic to make it look like a dense picture
Do it the other way around (pull):
throw a grid on the output
transform that backwards
sample the input at those points
The distinction is called "push" (into output) vs "pull" (from input). Only Pull gives proper results.
Very little MATLAB code is necessary. You just need pol2cart and interp2, and a meshgrid.
With interp2 you get to choose the interpolation (linear, cubic, ...). Nearest-neighbor interpolation leaves visible artefacts.
im = im2single(imread("PQFax.jpg"));
% center of polar map, manually picked
cx = 10 + 409/2;
cy = 7 + 413/2;
% output parameters
radius = 212;
dRho = 1;
dTheta = 2*pi / (2*pi * radius);
Thetas = pi/2 - (0:dTheta:2*pi);
Rhos = (0:dRho:radius);
% polar mesh
[Theta, Rho] = meshgrid(Thetas, Rhos);
% transform...
[Xq,Yq] = pol2cart(Theta, Rho);
% translate to sit on the circle's center
Xq = Xq + cx;
Yq = Yq + cy;
% sample image at those points
Ro = interp2(im(:,:,1), Xq,Yq, "cubic");
Go = interp2(im(:,:,2), Xq,Yq, "cubic");
Bo = interp2(im(:,:,3), Xq,Yq, "cubic");
Vo = cat(3, Ro, Go, Bo);
Vo = imrotate(Vo, 180);
imshow(Vo)
The other way around (get a "torus" from a "ribbon") is quite similar. Throw a meshgrid on the torus space, subtract center, transform from cartesian to polar, and use those to sample from the "ribbon" image into the "torus" image.
I'm more familiar with OpenCV than with MATLAB. Perhaps MATLAB has something like OpenCV's warpPolar(), or a generic remap(). In any case, the operation is trivial to do entirely "by hand" but there are enough supporting functions to take the heavy lifting off your hands (interp2, pol2cart, meshgrid).
1.- The white arcs tell that the used translation pol-cart introduces significant errors.
2.- Reversing the following script solves your question.
It's a script that goes from cart-pol without introducing errors or ignoring input data, which is what happens when such wide white arcs show up upon translation apparently correct.
clear all;clc;close all
clc,cla;
format long;
A=imread('shaffen dass.jpg');
[sz1 sz2 sz3]=size(A);
szx=sz2;szy=sz1;
A1=A(:,:,1);A2=A(:,:,2);A3=A(:,:,3); % working with binary maps or grey scale images this wouldn't be necessary
figure(1);imshow(A);
hold all;
Cx=floor(szx/2);Cy=floor(szy/2);
plot(Cx,Cy,'co'); % because observe image centre not centered
Rmin=80;Rmax=400; % radius search range for imfindcircles
[centers, radii]=imfindcircles(A,[Rmin Rmax],... % outer circle
'ObjectPolarity','dark','Sensitivity',0.9);
h=viscircles(centers,radii);
hold all; % inner circle
[centers2, radii2]=imfindcircles(A,[Rmin Rmax],...
'ObjectPolarity','bright');
h=viscircles(centers2,radii2);
% L=floor(.5*(radii+radii2)); % this is NOT the length X that should have the resulting XY morphed graph
L=floor(2*pi*radii); % expected length of the morphed graph
cx=floor(.5*(centers(1)+centers2(1))); % coordinates of averaged circle centres
cy=floor(.5*(centers(2)+centers2(2)));
plot(cx,cy,'r*'); % check avg centre circle is not aligned to figure centre
plot([cx 1],[cy 1],'r-.');
t=[45:360/L:404+1-360/L]; % if step=1 then we only get 360 points but need an amount of L points
% if angle step 1/L over minute waiting for for loop to finish
R=radii+5;x=R*sind(t)+cx;y=R*cosd(t)+cy; % build outer perimeter
hL1=plot(x,y,'m'); % axis equal;grid on;
% hold all;
% plot(hL1.XData,hL1.YData,'ro');
x_ref=hL1.XData;y_ref=hL1.YData;
% Sx=zeros(ceil(R),1);Sy=zeros(ceil(R),1);
Sx={};Sy={};
for k=1:1:numel(hL1.XData)
Lx=floor(linspace(x_ref(k),cx,ceil(R)));
Ly=floor(linspace(y_ref(k),cy,ceil(R)));
% plot(Lx,Ly,'go'); % check
% plot([cx x(k)],[cy y(k)],'r');
% L1=unique([Lx;Ly]','rows');
Sx=[Sx Lx'];Sy=[Sy Ly'];
end
sx=cell2mat(Sx);sy=cell2mat(Sy);
[s1 s2]=size(sx);
B1=uint8(zeros(s1,s2));
B2=uint8(zeros(s1,s2));
B3=uint8(zeros(s1,s2));
for n=1:1:s2
for k=1:1:s1
B1(k,n)=A1(sx(k,n),sy(k,n));
B2(k,n)=A2(sx(k,n),sy(k,n));
B3(k,n)=A3(sx(k,n),sy(k,n));
end
end
C=uint8(zeros(s1,s2,3));
C(:,:,1)=B1;
C(:,:,2)=B2;
C(:,:,3)=B3;
figure(2);imshow(C);
the resulting
3.- let me know if you'd like some assistance writing pol-cart from this script.
Regards
John BG

How can I reduce the number of mesh lines shown in a surface plot?

I've found this answer, but I can't complete my work. I wanted to plot more precisely the functions I am studying, without overcoloring my function with black ink... meaning reducing the number of mesh lines. I precise that the functions are complex.
I tried to add to my already existing code the work written at the link above.
This is what I've done:
r = (0:0.35:15)'; % create a matrix of complex inputs
theta = pi*(-2:0.04:2);
z = r*exp(1i*theta);
w = z.^2;
figure('Name','Graphique complexe','units','normalized','outerposition',[0.08 0.1 0.8 0.55]);
s = surf(real(z),imag(z),imag(w),real(w)); % visualize the complex function using surf
s.EdgeColor = 'none';
x=s.XData;
y=s.YData;
z=s.ZData;
x=x(1,:);
y=y(:,1);
% Divide the lengths by the number of lines needed
xnumlines = 10; % 10 lines
ynumlines = 10; % 10 partitions
xspacing = round(length(x)/xnumlines);
yspacing = round(length(y)/ynumlines);
hold on
for i = 1:yspacing:length(y)
Y1 = y(i)*ones(size(x)); % a constant vector
Z1 = z(i,:);
plot3(x,Y1,Z1,'-k');
end
% Plotting lines in the Y-Z plane
for i = 1:xspacing:length(x)
X2 = x(i)*ones(size(y)); % a constant vector
Z2 = z(:,i);
plot3(X2,y,Z2,'-k');
end
hold off
But the problem is that the mesh is still invisible. How to fix this? Where is the problem?
And maybe, instead of drawing a grid, perhaps it is possible to draw circles and radiuses like originally on the graph?
I found an old script of mine where I did more or less what you're looking for. I adapted it to the radial plot you have here.
There are two tricks in this script:
The surface plot contains all the data, but because there is no mesh drawn, it is hard to see the details in this surface (your data is quite smooth, this is particularly true for a more bumpy surface, so I added some noise to the data to show this off). To improve the visibility, we use interpolation for the color, and add a light source.
The mesh drawn is a subsampled version of the original data. Because the original data is radial, the XData and YData properties are not a rectangular grid, and therefore one cannot just take the first row and column of these arrays. Instead, we use the full matrices, but subsample rows for drawing the circles and subsample columns for drawing the radii.
% create a matrix of complex inputs
% (similar to OP, but with more data points)
r = linspace(0,15,101).';
theta = linspace(-pi,pi,101);
z = r * exp(1i*theta);
w = z.^2;
figure, hold on
% visualize the complex function using surf
% (similar to OP, but with a little bit of noise added to Z)
s = surf(real(z),imag(z),imag(w)+5*rand(size(w)),real(w));
s.EdgeColor = 'none';
s.FaceColor = 'interp';
% get data back from figure
x = s.XData;
y = s.YData;
z = s.ZData;
% draw circles -- loop written to make sure the outer circle is drawn
for ii=size(x,1):-10:1
plot3(x(ii,:),y(ii,:),z(ii,:),'k-');
end
% draw radii
for ii=1:5:size(x,2)
plot3(x(:,ii),y(:,ii),z(:,ii),'k-');
end
% set axis properties for better 3D viewing of data
set(gca,'box','on','projection','perspective')
set(gca,'DataAspectRatio',[1,1,40])
view(-10,26)
% add lighting
h = camlight('left');
lighting gouraud
material dull
How about this approach?
[X,Y,Z] = peaks(500) ;
surf(X,Y,Z) ;
shading interp ;
colorbar
hold on
miss = 10 ; % enter the number of lines you want to miss
plot3(X(1:miss:end,1:miss:end),Y(1:miss:end,1:miss:end),Z(1:miss:end,1:miss:end),'k') ;
plot3(X(1:miss:end,1:miss:end)',Y(1:miss:end,1:miss:end)',Z(1:miss:end,1:miss:end)','k') ;

Searching Across a Line in a Matrix in Octave

The attached image has a line with a break in it.
My code finds the line using a hough transform resulting in r=32 and theta=2.3213. The hough transform isn't perfect, the angle (especially with a more complex image) is always off by a little bit, and in this case, because of the edge detection, the line is offset. I want to read values across the line to find the breaks in it. In order to do this, I will need to be able to sample values on either side of the line to find where the maximum density of the line is.
Further explanation (if you want it):
If you look closely at the image you can see areas where the line crosses a pixel pretty much dead on resulting in a value of nearly 1/white. Other areas have two pixels side by side with values of about .5/gray. I need to find a solution that takes into account the anti-aliasing of the line, and allows me to extract the breaks in it.
%Program Preparation
clear ; close all; clc %clearing command window
pkg load image %loading image analyzation suite
pkg load optim
%Import Image
I_original = imread("C:/Users/3015799/Desktop/I.jpg");
%Process Image to make analysis quicker and more effective
I = mat2gray(I_original); %convert to black and white
I = edge(I, 'sobel');
%Perform Hough Transform
angles = pi*[-10:189]/180;
hough = houghtf(I,"line",angles);
%Detect hot spots in hough transform
detect = hough>.5*max(hough(:));
%Shrink hotspots to geometric center, and index
detect = bwmorph(detect,'shrink',inf);
[ii, jj] = find(detect);
r = ii - (size(hough,1)-1)/2;
theta = angles(jj);
%Cull duplicates. i.e outside of 0-180 degrees
dup = theta<-1e-6 | theta>=pi-1e-6;
r(dup) = [];
theta(dup) = [];
%Compute line parameters (using Octave's implicit singleton expansion)
r = r(:)'
theta = theta(:)'
x = repmat([1;1133],1,length(r)); % 2xN matrix, N==length(r)
y = (r - x.*cos(theta))./sin(theta); % solve line equation for y
%The above goes wrong when theta==0, fix that:
horizontal = theta < 1e-6;
x(:,horizontal) = r(horizontal);
y(:,horizontal) = [1;:];
%Plot
figure
imshow(I)
hold on
plot(y,x,'r-','linewidth',2)
If you are only interested in the length of the gap, this would be very easy:
clear all
pkg load image
img_fn = "input.jpg";
if (! exist (img_fn, "file"))
urlwrite ("https://i.stack.imgur.com/5UnpO.jpg", img_fn);
endif
Io = imread(img_fn);
I = im2bw (Io);
r = max(I);
c = max(I');
ri = find (diff(r));
ci = find (diff(c));
## both should have 4 elements (one break)
assert (numel (ri) == 4);
assert (numel (ci) == 4);
## the gap is in the middle
dx = diff(ri(2:3))
dy = diff(ci(2:3))
# the length is now easy
l = hypot (dy, dx)
gives
dx = 5
dy = 5
l = 7.0711
without any hogh transform. Of course you have to also check the corener cases for horizontal and vertical lines but this should give you an idea

Matlab Rectify image with reference of corner points

I want to rectify an image with perspectival distorsion. I have points of the corners and I have also have an algorithm that perfoms what I need but it executes really slow. It has 'imtransform' and 'maketform' functions which matlab has faster functions for these actions. So I tried to replace them but I couldn't make it right. Any helps will be appreciated.
Here is the Images to make this question clearer:
Input Image with known Coordinates(x,y):
and Desired Output:
This process executed with the interval of 2 seconds, I need to replace this process via new matlab functions but I couldn't make it.
Old algorihm was:
%X has the clockwise X coordinates %Y has the clockwise Y coordinates
A=zeros(8,8);
A(1,:)=[X(1),Y(1),1,0,0,0,-1*X(1)*x(1),-1*Y(1)*x(1)];
A(2,:)=[0,0,0,X(1),Y(1),1,-1*X(1)*y(1),-1*Y(1)*y(1)];
A(3,:)=[X(2),Y(2),1,0,0,0,-1*X(2)*x(2),-1*Y(2)*x(2)];
A(4,:)=[0,0,0,X(2),Y(2),1,-1*X(2)*y(2),-1*Y(2)*y(2)];
A(5,:)=[X(3),Y(3),1,0,0,0,-1*X(3)*x(3),-1*Y(3)*x(3)];
A(6,:)=[0,0,0,X(3),Y(3),1,-1*X(3)*y(3),-1*Y(3)*y(3)];
A(7,:)=[X(4),Y(4),1,0,0,0,-1*X(4)*x(4),-1*Y(4)*x(4)];
A(8,:)=[0,0,0,X(4),Y(4),1,-1*X(4)*y(4),-1*Y(4)*y(4)];
v=[x(1);y(1);x(2);y(2);x(3);y(3);x(4);y(4)];
u=A\v;
%transfer fonksiyonumuz
U=reshape([u;1],3,3)';
w=U*[X';Y';ones(1,4)];
w=w./(ones(3,1)*w(3,:));
T=maketform('projective',U');
%transform uygulayıp resmi düzleştiriyoruz
P2=imtransform(I,T,'XData',[1 n],'YData',[1 m]);
if it helps, here is how I generated "A" matrix and U matrix:
Out Link
using the builtin MATLAB functions (fitgeotrans, imref2d, and imwarp) the following code runs in 0.06 seconds on my laptop:
% read the image
im = imread('paper.jpg');
tic
% set the moving points := the original image control points
x = [1380;2183;1282;422];
y = [727;1166;2351;1678];
movingPoints = [x,y];
% set the fixed points := the desired image control points
xfix = [1;1000;1000;1];
yfix = [1;1;1000;1000];
fixedPoints = [xfix,yfix];
% generate geometric transform
tform = fitgeotrans(movingPoints,fixedPoints,'projective');
% generate reference object (full desired image size)
R = imref2d([1000 1000]);
% warp image
outputImage = imwarp(im,tform,'OutputView',R);
toc
% show image
imshow(outputImage);

How would I plot the for loop from my code below?

I have 3D flow data of the velocity of a fluid through a tube. I know the diameter of the tube and have looked at the velocity field and found the centre of the field for an xy plane at both ends of the tube. So I essentially have a line through the centre axis of the tube. I want to NaN all data points that are outside of the diameter. For this I am using an equation that gives the distance to a point from a line in 3D which I found here mathworld.wolfram.com/Point-LineDistance3-Dimensional.html. I then created an if statement which states points smaller than diameter will be NaN.
I am new to matlab so I don't know how I would now plot this.
%%
diff_axis = end_axis-start_axis;
diff_axis_mag = (diff_axis(1)^2 + diff_axis(2)^2 + diff_axis(3)^2)^0.5;
[rw col pl] = size(X);
for j = 1:col
for i = 1:rw
for k = 1:pl
x_curr = X(i,j,k);
y_curr = Y(i,j,k);
z_curr= Z(i,j,k);
x0 = [x_curr y_curr z_curr]
t = - dot((start_axis-x0),(diff_axis))./(diff_axis_mag)^2;
d = sqrt(((start_axis(1) - x0(1)) + (end_axis(1) - start_end(1))*t)^2 + ((start_axis(2)-x0(2))+(end_axis(2)-start_end(2))*t)^2+((start_axis(3)-x0(3))+(end_axis(3)-start_end(3))*t)^2);
if (d > D)
x_curr=NaN
y_curr=NaN
z_curr=NaN
end
end
end
end
It were nice to have explanatory names for your X, Y, and Z. I am guessing they are flow components, and diff_axis are axis coordinates? It is a very cumbersome notation.
what you do in your loops is you take point values (X,Y,Z), copy them to temporary constants and then set them to NaN if they fall out. But the problem is that usually you do not plot point-by-point in MATLAB. So these temorary guys like x_curr will be lost.
Also, the most optimal way to do things in MATLAB is to avoid loops whenever possible.
What you can do is to create first a mask
%// remember to put a dot like in `.^` for entrywise array operations
diff_axis_mag = sqrt(diff_axis(1).^2 + diff_axis(2).^2 + diff_axis(3).^2);
%// are you sure you need to include the third axis?
%// then it is a ball, not a tube
%// create a binary mask
mask = diff_axis_mag < tube_radius
X(~mask) = NaN;
Y(~mask) = NaN;
Z(~mask) = NaN;
Then you can plot your data with quiver3 or
stream3