Training of FCN matlab not decreasing loss - matlab

I have a Neural Network based on Fully Convolutional Neural Network for semantic segmentation / pixelwise object detection ( FCN) and try to train it using Pascal-Context data. However, instead of 450 classes provided by the dataset, I only want to capture 12 + background.
I prepared a dataset with 7000+ images and label maps, and followed the tutorial on Semantic Segmentation ( Semantic Segmentation), and followed every step similarly to the one presented.
However, when I train my neural network my Mini-batch loss remains constant (checked until end of first 3 epochs, then tried to reduce the amount of images, but still the same value) and doesn't change, even if I change learning rate or other parameters. Is there something wrong with the training process?
So I tried to reduce the number of images to 400, and what I am getting is in picture below. It doesn't improve at all.
( First column represents entry number, second Iteration Number, Third Time Elapsed, Fourth Mini-batch loss, Fifth Accuracy on batch, and finally learning rate).
Below is my code:
% MAIN FUNCTION %
outputFolder= fullfile('imade');
imgDir = fullfile('imade','images');
labelDir = fullfile('imade','labels');
imds = imageDatastore(imgDir);
I = readimage(imds, 1);
% I = histeq(I);
% figure
% imshow(I)
classes = [
"bottle"
"chair"
"diningtable"
"person"
"pottedplant"
"sofa"
"tvmonitor"
"ground"
"wall"
"floor"
"keyboard"
"ceiling"
"background"
];
valueSet = {
[230 25 75]
[60 180 75]
[255 225 25]
[0 130 200]
[245 130 48]
[145 30 180]
[128 128 0]
[210 245 60]
[250 190 190]
[0 128 128]
[170 110 40]
[128 0 0]
[0 0 0]
};
pxds = pixelLabelDatastore(labelDir,classes,valueSet);
% show sample image with overlay
C = readimage(pxds, 1);
cmap = camvidColorMap;
B = labeloverlay(I,C,'ColorMap',cmap);
figure
imshow(B)
pixelLabelColorbar(cmap,classes)
% calculate frequency of class pixels
tbl = countEachLabel(pxds);
% resize images and labels to desired format
imageFolder = fullfile(outputFolder,'imagesReszed',filesep);
imds = resizeCamVidImages(imds,imageFolder);
labelFolder = fullfile(outputFolder,'labelsResized',filesep);
pxds = resizeCamVidPixelLabels(pxds,labelFolder);
% partition dataset into test and train
[imdsTrain, imdsTest, pxdsTrain, pxdsTest] = partitionCamVidData(imds,pxds);
% create FCN net
imageSize = [225 300];
numClasses = numel(classes);
lgraph = fcnLayers(imageSize,numClasses,'type','16s');
st = fullfile('imade','checkPoint');
% adjust based on occurrence of each class
imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;
classWeights = median(imageFreq) ./ imageFreq;
pxLayer = pixelClassificationLayer('Name','labels','ClassNames', tbl.Name, 'ClassWeights', classWeights);
lgraph = removeLayers(lgraph, 'pixelLabels');
lgraph = addLayers(lgraph, pxLayer);
lgraph = connectLayers(lgraph, 'softmax' ,'labels');
% set training parameters
options = trainingOptions('sgdm', ...
'Momentum', 0.9, ...
'InitialLearnRate', 1e-3, ...
'L2Regularization', 0.0005, ...
'MaxEpochs', 100, ...
'MiniBatchSize', 1, ...
'Shuffle', 'every-epoch', ...
'VerboseFrequency', 2);
datasource = pixelLabelImageSource(imdsTrain,pxdsTrain);
doTraining = true;
if doTraining
[net, info] = trainNetwork(datasource,lgraph,options);
else
data = load (strcat(st,filesep,'convnet_checkpoint__4607__2018_01_27__21_25_03.mat'));
war = data.net;
[sp, info] = trainNetwork(datasource,war.Layers,options);
end

Related

Using norm Function In MATLAB

I have a matrix of data which is the coordinates of some points and coordinates of 5 clusters
data = [randi(100,100,1),randi(100,100,1)];
x_Clusters = [20 5 12 88 61];
y_Clusters = [10 50 14 41 10];
Coordinates_Of_Clusters = [x_Clusters',y_Clusters'];
I want to use norm function to determine the distances from the centers of 5 known clusters which are the above coordinates to my data. How could I do that?
The funtion norm(X) is the same as norm(X,2). Matlab uses the 2-norm (Euclidean distance) by default.
Using your code to begin:
% number of data points (trying to harcode less values)
n_points = 100;
data = [randi(n_points,n_points,1),randi(n_points,n_points,1)];
x_Clusters = [20 5 12 88 61];
y_Clusters = [10 50 14 41 10];
Coordinates_Of_Clusters = [x_Clusters',y_Clusters'];
% number of clusters
n_clusters = size(Coordinates_Of_Clusters,1);
% option 1: output is 100-by-10
output_matrix_100x10 = zeros(n_points,2*n_clusters);
% option 2: output is 500-by-2
output_matrix_500x2 = zeros(n_points*n_clusters,2);
Then use for loops for all clusters (n_clusters) and for each point (n_points):
for n = 1:n_clusters
for i = 1:n_points
% option 1
output_matrix_100x10(i,(n-1)*2+1:(n-1)*2+2) = ...
norm(data(i,:)-Coordinates_Of_Clusters(n,:), 2);
% option 2
output_matrix_500x2((n-1)*n_points+i,1:2) = ...
norm(data(i,:)-Coordinates_Of_Clusters(n,:), 2);
end
end

Transfer Learning for Regression in Matlab

I am trying to implement a model that takes an image as the input and gives a vector of 26 numbers. I am using VGG-16 at this time through the following Matlab code:
analyzeNetwork(net);
NUM_OUTPUT = 26;
layers = net.Layers;
%output = fullyConnectedLayer(NUM_OUTPUT, ...
% 'Name','output_layer', ...
% 'WeightLearnRateFactor',10, ...
% 'BiasLearnRateFactor',10);
layers = [
layers(1:38)
fullyConnectedLayer(NUM_OUTPUT)
regressionLayer];
%layers(1:67) = freezeWeights(layers(1:67));
miniBatchSize = 5;
validationFrequency = floor(numel(YTrain)/miniBatchSize);
options = trainingOptions('sgdm',...
'InitialLearnRate',0.001, ...
'ValidationData',{XValidation,YValidation},...
'Plots','training-progress',...
'Verbose',false);
net = trainNetwork(XTrain,YTrain,layers,options);
YPred = predict(net,XValidation);
predictionError = YValidation - YPred;
thr = 10;
numCorrect = sum(abs(predictionError) < thr);
numImagesValidation = numel(YValidation);
accuracy = numCorrect/numImagesValidation;
rmse = sqrt(mean(predictionError.^2));
The shape of XTrain and YTrain are as follows:
XTrain: 224 224 3 140
YTrain: 26 140
By running the code above (it is a part of the code not the whole of it) I get the following error:
Error using trainNetwork (line 170)
Number of observations in X and Y disagree.
I would appreciate it if somebody could help me to figure out what is the problem because as far as I know the number of samples in both are equal and there is no necessity for the rest of the dimensions to be equal.
Transpose YTrain to be 140x26.
Name your new layers, and make them layerGraph
Regression can easly go unstable so decrease learning rate or increase batch size if you get some nans.
net = vgg16 ; % analyzeNetwork(net);
LAYERS_FREEZE_UNTIL=35;
LAYERS_COPY_UNTIL=38;
NUM_TRAIN_SAMPLES = size(YTrain,1);
NUM_OUTPUT = size(YTrain,2);
my_layers =layerGraph([
freezeWeights(net.Layers(1:LAYERS_FREEZE_UNTIL))
net.Layers(LAYERS_FREEZE_UNTIL+1:LAYERS_COPY_UNTIL)
fullyConnectedLayer(NUM_OUTPUT*2,'Name','my_fc1')
fullyConnectedLayer(NUM_OUTPUT,'Name','my_fc2')
regressionLayer('Name','my_regr')
]);
% figure; plot(my_layers), ylim([0.5,6.5])
% analyzeNetwork(my_layers);
MINI_BATCH_SIZE = 16;
options = trainingOptions('sgdm', ...
'MiniBatchSize',MINI_BATCH_SIZE, ...
'MaxEpochs',20, ...
'InitialLearnRate',1e-4, ...
'Shuffle','every-epoch', ...
'ValidationData',{XValidation,YValidation}, ...
'ValidationFrequency',floor(NUM_TRAIN_SAMPLES/MINI_BATCH_SIZE), ...
'Verbose',true, ...
'Plots','training-progress');
my_net = trainNetwork(XTrain,YTrain,my_layers,options);

CUDA_ERROR_ILLEGAL_ADDRESS when runnin Faster R-CNN on Matlab

I'm running faster R-CNN in matlab 2018b on a Windows 10. I face an exception CUDA_ERROR_ILLEGAL_ADDRESS when I increase the number of my training items or when I increase the MaxEpoch.
Below are the information of my gpuDevice
CUDADevice with properties:
Name: 'GeForce GTX 1050'
Index: 1
ComputeCapability: '6.1'
SupportsDouble: 1
DriverVersion: 9.2000
ToolkitVersion: 9.1000
MaxThreadsPerBlock: 1024
MaxShmemPerBlock: 49152
MaxThreadBlockSize: [1024 1024 64]
MaxGridSize: [2.1475e+09 65535 65535]
SIMDWidth: 32
TotalMemory: 4.2950e+09
AvailableMemory: 3.4635e+09
MultiprocessorCount: 5
ClockRateKHz: 1493000
ComputeMode: 'Default'
GPUOverlapsTransfers: 1
KernelExecutionTimeout: 1
CanMapHostMemory: 1
DeviceSupported: 1
DeviceSelected: 1
And this is my code
latest_index =0;
for i=1:6
load (strcat('newDataset', int2str(i), '.mat'));
len =length(vehicleDataset.imageFilename);
for j=1:len
filename = vehicleDataset.imageFilename{j};
latest_index=latest_index+1;
fulldata.imageFilename{latest_index} = filename;
fulldata.vehicle{latest_index} = vehicleDataset.vehicle{j};
end
end
trainingDataTable = table(fulldata.imageFilename', fulldata.vehicle');
trainingDataTable.Properties.VariableNames = {'imageFilename','vehicle'};
data.trainingDataTable = trainingDataTable;
trainingDataTable(1:4,:)
% Split data into a training and test set.
idx = floor(0.6 * height(trainingDataTable));
trainingData = trainingDataTable(1:idx,:);
testData = trainingDataTable(idx:end,:);
% Create image input layer.
inputLayer = imageInputLayer([32 32 3]);
% Define the convolutional layer parameters.
filterSize = [3 3];
numFilters = 64;
% Create the middle layers.
middleLayers = [
convolution2dLayer(filterSize, numFilters, 'Padding', 1)
reluLayer()
convolution2dLayer(filterSize, numFilters, 'Padding', 1)
reluLayer()
maxPooling2dLayer(3, 'Stride',2)
];
finalLayers = [
fullyConnectedLayer(128)
% Add a ReLU non-linearity.
reluLayer()
fullyConnectedLayer(width(trainingDataTable))
% Add the softmax loss layer and classification layer.
softmaxLayer()
classificationLayer()
];
layers = [
inputLayer
middleLayers
finalLayers
];
% Options for step 1.
optionsStage1 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
% Options for step 2.
optionsStage2 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
% Options for step 3.
optionsStage3 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
% Options for step 4.
optionsStage4 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
options = [
optionsStage1
optionsStage2
optionsStage3
optionsStage4
];
doTrainingAndEval = true;
if doTrainingAndEval
% Set random seed to ensure example training reproducibility.
rng(0);
% Train Faster R-CNN detector. Select a BoxPyramidScale of 1.2 to allow
% for finer resolution for multiscale object detection.
detector = trainFasterRCNNObjectDetector(trainingData, layers, options, ...
'NegativeOverlapRange', [0 0.3], ...
'PositiveOverlapRange', [0.6 1], ...
'BoxPyramidScale', 1.2);
data.detector= detector;
else
% Load pretrained detector for the example.
detector = data.detector;
end
save mix_data data
if doTrainingAndEval
% Run detector on each image in the test set and collect results.
resultsStruct = struct([]);
for i = 1:height(testData)
% Read the image.
I = imread(testData.imageFilename{i});
% Run the detector.
[bboxes, scores, labels] = detect(detector, I);
% Collect the results.
resultsStruct(i).Boxes = bboxes;
resultsStruct(i).Scores = scores;
resultsStruct(i).Labels = labels;
end
% Convert the results into a table.
results = struct2table(resultsStruct);
data.results = results;
save mix_data data
else
% Load results from disk.
results = data.results;
end
% Extract expected bounding box locations from test data.
expectedResults = testData(:, 2:end);
% Evaluate the object detector using Average Precision metric.
[ap, recall, precision] = evaluateDetectionPrecision(results, expectedResults);
% Plot precision/recall curve
figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', ap))
First it prints the warning multiple time and throws the below exception
Warning: An unexpected error occurred during CUDA execution. The CUDA error was:
CUDA_ERROR_ILLEGAL_ADDRESS
In trainFasterRCNNObjectDetector (line 320)
In rcnn_trail (line 184)
Error using -
An unexpected error occurred during CUDA execution. The CUDA error was:
CUDA_ERROR_ILLEGAL_ADDRESS
Error in vision.internal.cnn.layer.SmoothL1Loss/backwardLoss (line 156)
idx = (X > -one) & (X < one);
Error in nnet.internal.cnn.DAGNetwork/computeGradientsForTraining/efficientBackProp (line 585)
dLossdX = thisLayer.backwardLoss( ...
Error in nnet.internal.cnn.DAGNetwork>#()efficientBackProp(i) (line 661)
#() efficientBackProp(i), ...
Error in nnet.internal.cnn.util.executeWithStagedGPUOOMRecovery (line 11)
[ varargout{1:nOutputs} ] = computeFun();
Error in nnet.internal.cnn.DAGNetwork>iExecuteWithStagedGPUOOMRecovery (line 1195)
[varargout{1:nargout}] = nnet.internal.cnn.util.executeWithStagedGPUOOMRecovery(varargin{:});
Error in nnet.internal.cnn.DAGNetwork/computeGradientsForTraining (line 660)
theseGradients = iExecuteWithStagedGPUOOMRecovery( ...
Error in nnet.internal.cnn.Trainer/computeGradients (line 184)
[gradients, predictions, states] = net.computeGradientsForTraining(X, Y,
needsStatefulTraining, propagateState);
Error in nnet.internal.cnn.Trainer/train (line 85)
[gradients, predictions, states] = this.computeGradients(net, X, response,
needsStatefulTraining, propagateState);
Error in vision.internal.cnn.trainNetwork (line 47)
trainedNet = trainer.train(trainedNet, trainingDispatcher);
Error in fastRCNNObjectDetector.train (line 190)
[network, info] = vision.internal.cnn.trainNetwork(ds, lgraph, opts, mapping,
checkpointSaver);
Error in trainFasterRCNNObjectDetector (line 410)
[stage2Detector, fastRCNN, ~, info(2)] = fastRCNNObjectDetector.train(trainingData, fastRCNN,
options(2), iStageTwoParams(params), checkpointSaver);
Error in rcnn_trail (line 184)
detector = trainFasterRCNNObjectDetector(trainingData, layers, options, ...
After talking to Matlab support, apparently my GPU is not the "right" GPU for deep learning and Neural Network.
However, I found that the issue was that Windows changed the GPU during the run, to fix this I went to INVIDIA Control Panel > Programs settings >
1. Select Mathworks Matlab
2. Preferred graphic processor choose your GPU card

How to set the number of iterations in RCNN, Fast RCNN or Faster RCNN?

I have trained R-CNN network models on a custom dataset and got the results as expected in the end. But I couldn't find where to set the number of iterations before starting the train process and the training continues without any sign of when it's going to stop. Is there a way to set the number of iterations beforehand, so it would stop after specified steps?
This is the code of training the rcnn:
%%%%%%%%%%%%%%%%%%%%%% Define Inputs
imagePath = 'D:\Thesis\Data\VEDAI\vedai\train_images\';
sampleImage = '00000000.png';
objectClasses = {'car','truck','tractor','campingcar','van','other', 'pickup', 'boat', 'plane'};
imageTable = vedaiTrain;
smallestObjectSize = [32, 32, 3];
%%%%%%%%%%%%%%%%%%%%%% Calculations
numClassesPlusBackground = numel(objectClasses) + 1;
t = num2cell(smallestObjectSize);
[height, width, numChannels] = deal(t{:});
imageSize = [height width numChannels];
%%%%%%%%%%%%%%%%%%%%%% Network Layers
%%%%% inputLayer
inputLayer = imageInputLayer(imageSize);
%%%%% middleLayer
filterSize = [5 5];
numFilters = 32;
middleLayers = [
convolution2dLayer(filterSize, numFilters, 'Padding', 2)
reluLayer()
maxPooling2dLayer(3, 'Stride', 2)
convolution2dLayer(filterSize, numFilters, 'Padding', 2)
reluLayer()
maxPooling2dLayer(3, 'Stride',2)
convolution2dLayer(filterSize, 2 * numFilters, 'Padding', 2)
reluLayer()
maxPooling2dLayer(3, 'Stride',2)
]
%%%%% finalLayer
finalLayers = [
fullyConnectedLayer(64)
reluLayer
fullyConnectedLayer(numClassesPlusBackground)
softmaxLayer
classificationLayer
]
Layers = [
inputLayer
middleLayers
finalLayers
]
layers(2).Weights = 0.0001 * randn([filterSize numChannels numFilters]);
%%%%%%%%%%%%%%%%%%%%%% training options
options = trainingOptions('sgdm', ...
'Momentum', 0.9, ...
'InitialLearnRate', 0.001, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropFactor', 0.1, ...
'LearnRateDropPeriod', 8, ...
'L2Regularization', 0.004, ...
'MaxEpochs', 40, ...
'MiniBatchSize', 128, ...
'Verbose', true);
%%%%%%%%%%%%%%%%%%%%%% Train an R-CNN object detector
rcnn = trainRCNNObjectDetector(imageTable,Layers, options, ...
'NegativeOverlapRange', [0 0.3], 'PositiveOverlapRange',[0.5 1]);
It keeps training for iterations until some time, which I don't know how it decides.
In the file train_faster_rcnn_alt_opt.py file, set the max_iters = [80000, 40000, 80000, 40000] parameter to the number of iterations you want at each stage.

Training neural network for image segmentation

I have one set of original image patches (101x101 matrices) and another corresponding set of image patches (same size 101x101) in binary which are the 'answer' for training the neural network. I wanted to train my neural network so that it can learn, recognize the shape that it's trained from the given image, and produce the image (in same matrix form 150x10201 maybe?) at the output matrix (as a result of segmentation).
Original image is on the left and the desired output is on the right.
So, as for pre-processing stage of the data, I reshaped the original image patches into vector matrices of 1x10201 for each image patch. Combining 150 of them i get a 150x10201 matrix as my input, and another 150x10201 matrix from the binary image patches. Then I provide these input data into the deep learning network. I used Deep Belief Network in this case.
My Matlab code for setup and train DBN as below:
%train a 4 layers 100 hidden unit DBN and use its weights to initialize a NN
rand('state',0)
%train dbn
dbn.sizes = [100 100 100 100];
opts.numepochs = 5;
opts.batchsize = 10;
opts.momentum = 0;
opts.alpha = 1;
dbn = dbnsetup(dbn, train_x, opts);
dbn = dbntrain(dbn, train_x, opts);
%unfold dbn to nn
nn = dbnunfoldtonn(dbn, 10201);
nn.activation_function = 'sigm';
%train nn
opts.numepochs = 1;
opts.batchsize = 10;
assert(isfloat(train_x), 'train_x must be a float');
assert(nargin == 4 || nargin == 6,'number ofinput arguments must be 4 or 6')
loss.train.e = [];
loss.train.e_frac = [];
loss.val.e = [];
loss.val.e_frac = [];
opts.validation = 0;
if nargin == 6
opts.validation = 1;
end
fhandle = [];
if isfield(opts,'plot') && opts.plot == 1
fhandle = figure();
end
m = size(train_x, 1);
batchsize = opts.batchsize;
numepochs = opts.numepochs;
numbatches = m / batchsize;
assert(rem(numbatches, 1) == 0, 'numbatches must be a integer');
L = zeros(numepochs*numbatches,1);
n = 1;
for i = 1 : numepochs
tic;
kk = randperm(m);
for l = 1 : numbatches
batch_x = train_x(kk((l - 1) * batchsize + 1 : l * batchsize), :);
%Add noise to input (for use in denoising autoencoder)
if(nn.inputZeroMaskedFraction ~= 0)
batch_x = batch_x.*(rand(size(batch_x))>nn.inputZeroMaskedFraction);
end
batch_y = train_y(kk((l - 1) * batchsize + 1 : l * batchsize), :);
nn = nnff(nn, batch_x, batch_y);
nn = nnbp(nn);
nn = nnapplygrads(nn);
L(n) = nn.L;
n = n + 1;
end
t = toc;
if opts.validation == 1
loss = nneval(nn, loss, train_x, train_y, val_x, val_y);
str_perf = sprintf('; Full-batch train mse = %f, val mse = %f',
loss.train.e(end), loss.val.e(end));
else
loss = nneval(nn, loss, train_x, train_y);
str_perf = sprintf('; Full-batch train err = %f', loss.train.e(end));
end
if ishandle(fhandle)
nnupdatefigures(nn, fhandle, loss, opts, i);
end
disp(['epoch ' num2str(i) '/' num2str(opts.numepochs) '. Took ' num2str(t) ' seconds' '. Mini-batch mean squared error on training set is ' num2str(mean(L((n-numbatches):(n-1)))) str_perf]);
nn.learningRate = nn.learningRate * nn.scaling_learningRate;
end
Can anyone let me know, is the training for the NN like this enable it to do the segmentation work? or how should I modify the code to train the NN so that it can generate the output/result as the image matrix in 150x10201 form?
Thank you so much..
Your inputs are TOO big. You should try to work with smaller patches from 19x19 to maximum 30x30 (which already represent 900 neurons into the input layer).
Then comes your main problem: you only have 150 images! And when you train a NN, you need at least three times more training instances than weights into your NN. So be very careful to the architecture you choose.
A CNN may be more adapted to your problem.