The questions about Spark dataframe operations [duplicate] - scala

This question already has an answer here:
get TopN of all groups after group by using Spark DataFrame
(1 answer)
Closed 5 years ago.
if I create a dataframe like this:
val df1 = sc.parallelize(List((1, 1), (1, 1), (1, 1), (1, 2), (1, 2), (1, 3), (2, 1), (2, 2), (2, 2), (2, 3)).toDF("key1","key2")
Then I group by "key1" and "key2", and count "key2".
val df2 = df1.groupBy("key1","key2").agg(count("key2") as "k").sort(col("k").desc)
My question is how to filter this dataframe and leave the top 2 num of the "k" from each "key1"?
if I don't use window functions ,what should I solve this problem?

This can be done using window-function, using row_number() (or also rank()/dense_rank(), depending on your requirements):
import org.apache.spark.sql.functions.row_number
import org.apache.spark.sql.expressions.Window
df2
.withColumn("rnb", row_number().over(Window.partitionBy($"key1").orderBy($"k".desc)))
.where($"rnb" <= 2).drop($"rnb")
.show()
EDIT:
Here a solution using RDD (which do not require a HiveContext):
df2
.rdd
.groupBy(_.getAs[Int]("key1"))
.flatMap{case (_,rows) => {
rows.toSeq
.sortBy(_.getAs[Long]("k")).reverse
.take(2)
.map{case Row(key1:Int,key2:Int,k:Long) => (key1,key2,k)}
}
}
.toDF("key1","key2","k")
.show()

Related

Compare 2 pyspark dataframe columns and change values of another column based on it

I have a problem where I have generated a dataframe from a graph algorithm that I have written. The thing is that I want to keep the value of the underlying component to be the same essentially after every run of the graph code.
This is a sample dataframe generated:
df = spark.createDataFrame(
[
(1, 'A1'),
(1, 'A2'),
(1, 'A3'),
(2, 'B1'),
(2, 'B2'),
(3, 'B3'),
(4, 'C1'),
(4, 'C2'),
(4, 'C3'),
(4, 'C4'),
(5, 'D1'),
],
['old_comp_id', 'db_id']
)
After another run the values change completely, so the new run has values like these,
df2 = spark.createDataFrame(
[
(2, 'A1'),
(2, 'A2'),
(2, 'A3'),
(3, 'B1'),
(3, 'B2'),
(3, 'B3'),
(1, 'C1'),
(1, 'C2'),
(1, 'C3'),
(1, 'C4'),
(4, 'D1'),
],
['new_comp_id', 'db_id']
)
So the thing I need to do is to compare the values between the above two dataframes and change the values of the component id based on the database id associated.
if the database_id are the same then update the component id to be from the 1st dataframe
if they are different then assign a completely new comp_id (new_comp_id = max(old_comp_id)+1)
This is what I have come up with so far:
old_ids = df.groupBy("old_comp_id").agg(F.collect_set(F.col("db_id")).alias("old_db_id"))
new_ids = df2.groupBy("new_comp_id").agg(F.collect_set(F.col("db_id")).alias("new_db_id"))
joined = new_ids.join(old_ids,old_ids.old_comp_id == new_ids.new_comp_id,"outer")
joined.withColumn("update_comp", F.when( F.col("new_db_id") == F.col("old_db_id"), F.col('old_comp_id')).otherwise(F.max(F.col("old_comp_id")+1))).show()
In order to use aggregated functions in non-aggregated columns, you should use Windowing Functions.
First, you outer-join the DFs with the db_id:
from pyspark.sql.functions import when, col, max
joinedDF = df.join(df2, df["db_id"] == df2["new_db_id"], "outer")
Then, start to building the Window (which where you group by db_id, and order by old_comp_id, in order to have in first rows the old_comp_id with highest value.
from pyspark.sql.window import Window
from pyspark.sql.functions import desc
windowSpec = Window\
.partitionBy("db_id")\
.orderBy(desc("old_comp_id"))\
.rowsBetween(Window.unboundedPreceding, Window.currentRow)
Then, you build the max column using the windowSpec
from pyspark.sql.functions import max
maxCompId = max(col("old_comp_id")).over(windowSpec)
Then, you apply it on the select
joinedDF.select(col("db_id"), when(col("new_db_id").isNotNull(), col("old_comp_id")).otherwise(maxCompId+1).alias("updated_comp")).show()
For more information, please refer to the documentation (http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.Window)
Hope this helps

Partial/Full-match value in one RDD to values in another RDD

I have two RDDs where the first RDD has records of the form
RDD1 = (1, 2017-2-13,"ABX-3354 gsfette"
2, 2017-3-18,"TYET-3423 asdsad"
3, 2017-2-09,"TYET-3423 rewriu"
4, 2017-2-13,"ABX-3354 42324"
5, 2017-4-01,"TYET-3423 aerr")
and the second RDD has records of the form
RDD2 = ('mfr1',"ABX-3354")
('mfr2',"TYET-3423")
I need to find all the records in RDD1 which have a full match/partial match for each value in RDD2 matching the 3rd Column of RDD1 to 2nd column of RDD2 and get the count
For this example, the end result would be:
ABX-3354 2
TYET-3423 3
What is the best way to do this?
I am posting couple of solutions with Spark SQL and more focused towards accurate pattern matching of search string in given text.
1: Using CrossJoin
import spark.implicits._
val df1 = Seq(
(1, "2017-2-13", "ABX-3354 gsfette"),
(2, "2017-3-18", "TYET-3423 asdsad"),
(3, "2017-2-09", "TYET-3423 rewriu"),
(4, "2017-2-13", "ABX-335442324"), //changed from "ABX-3354 42324"
(5, "2017-4-01", "aerrTYET-3423") //changed from "TYET-3423 aerr"
).toDF("id", "dt", "txt")
val df2 = Seq(
("mfr1", "ABX-3354"),
("mfr2", "TYET-3423")
).toDF("col1", "key")
//match function for filter
def matcher(row: Row): Boolean = row.getAs[String]("txt")
.contains(row.getAs[String]("key"))
val join = df1.crossJoin(df2)
import org.apache.spark.sql.functions.count
val result = join.filter(matcher _)
.groupBy("key")
.agg(count("txt").as("count"))
2: Using Broadcast variable
import spark.implicits._
val df1 = Seq(
(1, "2017-2-13", "ABX-3354 gsfette"),
(2, "2017-3-18", "TYET-3423 asdsad"),
(3, "2017-2-09", "TYET-3423 rewriu"),
(4, "2017-2-13", "ABX-3354 42324"),
(5, "2017-4-01", "aerrTYET-3423"),
(6, "2017-4-01", "aerrYET-3423")
).toDF("id", "dt", "pattern")
//small dataset to broadcast
val df2 = Seq(
("mfr1", "ABX-3354"),
("mfr2", "TYET-3423")
).map(_._2) // considering only 2 values in pair
//Lookup to use in UDF
val lookup = spark.sparkContext.broadcast(df2)
//Udf
import org.apache.spark.sql.functions._
val matcher = udf((txt: String) => {
val matches: Seq[String] = lookup.value.filter(txt.contains(_))
if (matches.size > 0) matches.head else null
})
val result = df1.withColumn("match", matcher($"pattern"))
.filter($"match".isNotNull) // not interested in non matching records
.groupBy("match")
.agg(count("pattern").as("count"))
Both solutions result same output
result.show()
+---------+-----+
| key|count|
+---------+-----+
|TYET-3423| 3|
| ABX-3354| 2|
+---------+-----+
Here is how you can get the result
val RDD1 = spark.sparkContext.parallelize(Seq(
(1, "2017-2-13", "ABX-3354 gsfette"),
(2, "2017-3-18", "TYET-3423 asdsad"),
(3, "2017-2-09", "TYET-3423 rewriu"),
(4, "2017-2-13", "ABX-3354 42324"),
(5, "2017-4-01", "TYET-3423 aerr")
))
val RDD2 = spark.sparkContext.parallelize(Seq(
("mfr1","ABX-3354"),
("mfr2","TYET-3423")
))
RDD1.map(r =>{
(r._3.split(" ")(0), (r._1, r._2, r._3))
})
.join(RDD2.map(r => (r._2, r._1)))
.groupBy(_._1)
.map(r => (r._1, r._2.toSeq.size))
.foreach(println)
Output:
(TYET-3423,3)
(ABX-3354,2)
Hope this helps!

efficiently using union in spark

I am new to scala and spark and now I have two RDD like A is [(1,2),(2,3)] and B is [(4,5),(5,6)] and I want to get RDD like [(1,2),(2,3),(4,5),(5,6)]. But thing is my data is large, suppose both A and B is 10GB. I use sc.union(A,B) but it is slow. I saw in spark UI there are 28308 tasks in this stage.
Is there more efficient way to do this?
Why don't you convert the two RDDs to dataframes and use union function.
Converting to dataframe is easy you just need to import sqlContext.implicits._ and apply .toDF() function with header names.
for example:
val sparkSession = SparkSession.builder().appName("testings").master("local").config("", "").getOrCreate()
val sqlContext = sparkSession.sqlContext
var firstTableColumns = Seq("col1", "col2")
var secondTableColumns = Seq("col3", "col4")
import sqlContext.implicits._
var firstDF = Seq((1, 2), (2, 3), (3, 4), (2, 3), (3, 4)).toDF(firstTableColumns:_*)
var secondDF = Seq((4, 5), (5, 6), (6, 7), (4, 5)) .toDF(secondTableColumns: _*)
firstDF = firstDF.union(secondDF)
It should be very easy for you to work with dataframes than with RDDs. Changing dataframe to RDD is quite easy too, just call .rdd function
val rddData = firstDF.rdd

Spark : anti-join two DStreams

I can do JOINs on two Spark DStreams like :
val joinStream = stream1.join(stream2)
Now, what if I need to filter out all the records that weren't JOINed. Essentially, something like stream1.anti-join(stream2). Is this possible somehow?
Thanks and appreciate any help!
Assuming you had these:
val rdd1 = sc.parallelize(Array(
(1, "one"),
(2, "twow"),
(3, "three"),
(4, "four"),
(5, "five")
))
val rdd2 = sc.parallelize(Array(
(1, "otherOne"),
(4, "otherFour"),
(5,"otherFive"),
(6,"six"),
(7,"seven")
))
val antiJoined = rdd1.fullOuterJoin(rdd2).filter(r => r._2._1.isEmpty || r._2._2.isEmpty)
antiJoined.collect foreach println
(6,(None,Some(six)))
(2,(Some(twow),None))
(3,(Some(three),None))
(7,(None,Some(seven)))

Spark - Best way agg two values using ReduceByKey

Using Spark, I have a pair RDD[(String, (Int, Int)]. I am trying to find the best way to show multiple sums per key (in this case the sum of each Int shown seperately). I would like to do this with reduceByKey.
Is this possible?
Sure.
val rdd = sc.parallelize(Array(("foo", (1, 10)), ("foo", (2, 2)), ("bar", (5, 5))))
val res = rdd.reduceByKey((p1, p2) => (p1._1 + p2._1, p1._2 + p2._2))
res.collect()